Magnetic nanoparticles for magnetically guided therapies against neural diseases
Resumen: Neurological pathologies and nerve damage are two problems of significant medical and economic impact because of the hurdles of losing nerve functionality in addition to significant mortality and morbidity, and demanding rehabilitation. There are currently a number of examples of how nanotechnology can provide new solutions for biomedical problems. Current strategies for nerve repair rely on the use of functionalized scaffolds working as “nerve guidance channels” to improve axonal regeneration and to direct axonal re-growth across the nerve lesion site. Since low invasiveness and high selectivity of the growth stimulation are usually conflicting requirements, new approaches are being pursued in order to overcome such limitations. Engineered magnetic nanoparticles (MNPs) have emerged from this need for noninvasive therapies for both positioning and guiding neural cells in response to an external magnetic field. Here, we review the current state of the use of MNPs for neuroprotective and magnetically guided therapies. We discuss some conceivable outcomes of current magnetically driven strategies seeking integrated platforms for regenerative action on damaged tissues.
Idioma: Inglés
DOI: 10.1557/mrs.2014.224
Año: 2014
Publicado en: MRS BULLETIN 39, 11 (2014), 965-969
ISSN: 0883-7694

Factor impacto JCR: 5.667 (2014)
Categ. JCR: PHYSICS, APPLIED rank: 16 / 141 = 0.113 (2014) - Q1 - T1
Categ. JCR: MATERIALS SCIENCE, MULTIDISCIPLINARY rank: 28 / 257 = 0.109 (2014) - Q1 - T1

Tipo y forma: Article (Published version)
Área (Departamento): Física de la Materia Condensada (Departamento de Física de la Materia Condensada)

Rights Reserved All rights reserved by journal editor


Exportado de SIDERAL (2018-06-22-11:08:14)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Física de la Materia Condensada



 Record created 2018-06-22, last modified 2018-06-22


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)