Measuring acute stress response through physiological signals: towards a quantitative assessment of stress

Arza, Adriana ; Garzón-Rey, Jorge Mario ; Lázaro, Jesús (Universidad de Zaragoza) ; Gil, Eduardo (Universidad de Zaragoza) ; Lopez-Anton, Raul (Universidad de Zaragoza) ; de la Camara, Conchita (Universidad de Zaragoza) ; Laguna, Pablo (Universidad de Zaragoza) ; Bailon, Raquel (Universidad de Zaragoza) ; Aguiló, Jordi
Measuring acute stress response through physiological signals: towards a quantitative assessment of stress
Financiación H2020 / H2020 Funds
Resumen: Social and medical problems associated with stress are increasing globally and seriously affect mental health and well-being. However, an effective stress-level monitoring method is still not available. This paper presents a quantitative method for monitoring acute stress levels in healthy young people using biomarkers from physiological signals that can be unobtrusively monitored. Two states were induced to 40 volunteers, a basal state generated with a relaxation task and an acute stress state generated by applying a standard stress test that includes five different tasks. Standard psychological questionnaires and biochemical markers were utilized as ground truth of stress levels. A multivariable approach to comprehensively measure the physiological stress response is proposed using stress biomarkers derived from skin temperature, heart rate, and pulse wave signals. Acute physiological stress levels (total-range 0–100 au) were continuously estimated every 1 min showing medians of 29.06 au in the relaxation tasks, while rising from 34.58 to 47.55 au in the stress tasks. Moreover, using the proposed method, five statistically different stress levels induced by the performed tasks were also measured. Results obtained show that, in these experimental conditions, stress can be monitored from unobtrusive biomarkers. Thus, a more general stress monitoring method could be derived based on this approach.
Idioma: Inglés
DOI: 10.1007/s11517-018-1879-z
Año: 2019
Publicado en: MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING 57, 1 (2019), 271-287
ISSN: 0140-0118

Factor impacto JCR: 2.022 (2019)
Categ. JCR: MATHEMATICAL & COMPUTATIONAL BIOLOGY rank: 24 / 59 = 0.407 (2019) - Q2 - T2
Categ. JCR: MEDICAL INFORMATICS rank: 18 / 27 = 0.667 (2019) - Q3 - T3
Categ. JCR: COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS rank: 61 / 109 = 0.56 (2019) - Q3 - T2
Categ. JCR: ENGINEERING, BIOMEDICAL rank: 58 / 87 = 0.667 (2019) - Q3 - T3

Factor impacto SCIMAGO: 0.552 - Computer Science Applications (Q2) - Biomedical Engineering (Q2)

Financiación: info:eu-repo/grantAgreement/EC/H2020/745755/EU/Wearable Cardiorespiratory Monitor/WECARMON
Tipo y forma: Artículo (PostPrint)
Área (Departamento): Área Ingen.Sistemas y Automát. (Dpto. Informát.Ingenie.Sistms.)
Área (Departamento): Área Psicología Básica (Dpto. Psicología y Sociología)
Área (Departamento): Área Teoría Señal y Comunicac. (Dpto. Ingeniería Electrón.Com.)
Área (Departamento): Area Psiquiatría (Dpto. Medicina, Psiqu. y Derm.)


Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.


Exportado de SIDERAL (2020-07-16-09:29:04)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2018-09-20, última modificación el 2020-07-16


Postprint:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)