NOD1 downregulates intestinal serotonin transporter and interacts with other pattern recognition receptors

Layunta, E. ; Latorre, E. (Universidad de Zaragoza) ; Forcen, R, ; Grasa, L. (Universidad de Zaragoza) ; Plaza, M. A. (Universidad de Zaragoza) ; Arias, M. (Universidad de Zaragoza) ; Alcalde, A. I. ; Mesonero, J. E. (Universidad de Zaragoza)
NOD1 downregulates intestinal serotonin transporter and interacts with other pattern recognition receptors
Resumen: Serotonin (5-HT) is an essential gastrointestinal modulator whose effects regulate the intestinal physiology. 5-HT effects depend on extracellular 5-HT bioavailability, which is controlled by the serotonin transporter (SERT) expressed in both the apical and basolateral membranes of enterocytes. SERT is a critical target for regulating 5-HT levels and consequently, modulating the intestinal physiology. The deregulation of innate immune receptors has been extensively studied in inflammatory bowel diseases (IBD), where an exacerbated defense response to commensal microbiota is observed. Interestingly, many innate immune receptors seem to affect the serotonergic system, demonstrating a new way in which microbiota could modulate the intestinal physiology. Therefore, our aim was to analyze the effects of NOD1 activation on SERT function, as well as NOD1's interaction with other immune receptors such as TLR2 and TLR4. Our results showed that NOD1 activation inhibits SERT activity and expression in Caco-2/TC7 cells through the extracellular signal-regulated kinase (ERK) signaling pathway. A negative feedback between 5-HT and NOD1 expression was also described. The results showed that TLR2 and TLR4 activation seems to regulate NOD1 expression in Caco-2/TC7 cells. To assess the extend of cross-talk between NOD1 and TLRs, NOD1 expression was measured in the intestinal tract (ileum and colon) of wild type mice and mice with individual knockouts of TLR2, and TLR4 as well as double knockout TLR2/TLR4 mice. Hence, we demonstrate that NOD1 acts on the serotonergic system decreasing SERT activity and molecular expression. Additionally, NOD1 expression seems to be modulated by 5-HT and other immune receptors as TLR2 and TLR4. This study could clarify the relation between both the intestinal serotonergic system and innate immune system, and their implications in intestinal inflammation.
Idioma: Inglés
DOI: 10.1002/jcp.26229
Año: 2018
Publicado en: JOURNAL OF CELLULAR PHYSIOLOGY 233, 5 (2018), 4183-4193
ISSN: 0021-9541

Factor impacto JCR: 4.522 (2018)
Categ. JCR: PHYSIOLOGY rank: 11 / 81 = 0.136 (2018) - Q1 - T1
Categ. JCR: CELL BIOLOGY rank: 62 / 191 = 0.325 (2018) - Q2 - T1

Factor impacto SCIMAGO: 1.445 - Cell Biology (Q1) - Physiology (Q1) - Clinical Biochemistry (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA/ARAINF-012-2008
Financiación: info:eu-repo/grantAgreement/ES/DGA/B022-13
Financiación: info:eu-repo/grantAgreement/ES/DGA/B61
Financiación: info:eu-repo/grantAgreement/ES/MINECO/SAF2014-54763-C2-1-R
Tipo y forma: Article (PrePrint)
Área (Departamento): Área Fisiología (Dpto. Farmacología y Fisiolog.)
Área (Departamento): Área Inmunología (Dpto. Microb.Med.Pr.,Sal.Públ.)
Área (Departamento): Área Biología Celular (Dpto. Bioq.Biolog.Mol. Celular)


Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2024-01-22-15:30:53)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2018-10-22, last modified 2024-01-22


Preprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)