Power to gas-oxyfuel boiler hybrid systems

Bailera, M. (Universidad de Zaragoza) ; Lisbona, P. ; Romeo, L. M. (Universidad de Zaragoza)
Power to gas-oxyfuel boiler hybrid systems
Resumen: One of the main future energy challenges is the management of electrical supply and demand, mainly motivated by the increase of share renewable energy in electricity mix. Thus, energy storage represents a crucial line of research and innovative solutions are currently being proposed. Power to Gas is a technology which stores excess of electrical energy in form of synthetic natural gas through the methanation of hydrogen produced by electrolysis. Methanation requires a source of CO2 which could be provided from the flue gas of an oxyfuel boiler. A further advantage of this hybridization comes from the supply of the oxygen generated by electrolysis to the oxyfuel combustion. In this study the concept is simulated using Aspen Plus® software and the performance of the combined system is analysed through the definition of a size ratio, ¿¿¿¿, that relates the flow of renewable hydrogen produced in electrolyser and the thermal output of the boiler. This variable has allowed defining different ranges of operation for a PtG- oxycombustion hybridized plant. Thus, for ¿¿¿¿ of 1.33, the air separation unit required as an auxiliary element for the oxyfuel boiler becomes unnecessary while if this ratio is increased up to 2.29, flue gas is completely consumed in the methanation plant and converted to synthetic natural gas.
Idioma: Inglés
DOI: 10.1016/j.ijhydene.2015.06.074
Año: 2015
Publicado en: International Journal of Hydrogen Energy 40, 32 (2015), 10168-10175
ISSN: 0360-3199

Factor impacto JCR: 3.205 (2015)
Categ. JCR: CHEMISTRY, PHYSICAL rank: 47 / 144 = 0.326 (2015) - Q2 - T1
Categ. JCR: ENERGY & FUELS rank: 28 / 88 = 0.318 (2015) - Q2 - T1
Categ. JCR: ELECTROCHEMISTRY rank: 8 / 27 = 0.296 (2015) - Q2 - T1

Factor impacto SCIMAGO: 1.27 - Condensed Matter Physics (Q1) - Renewable Energy, Sustainability and the Environment (Q1) - Fuel Technology (Q1) - Energy Engineering and Power Technology (Q1)

Tipo y forma: Article (PostPrint)
Área (Departamento): Área Máquinas y Motores Térmi. (Dpto. Ingeniería Mecánica)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2021-01-21-11:19:34)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Máquinas y Motores Térmicos



 Record created 2018-11-07, last modified 2021-01-21


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)