Quench dynamics in MgB2 Rutherford cables

Cubero, A. (Universidad de Zaragoza) ; Navarro, R. (Universidad de Zaragoza) ; Kovác, P. ; Kopera, L. ; Rindfleisch, M. ; Martínez, E. (Universidad de Zaragoza)
Quench dynamics in MgB2 Rutherford cables
Resumen: The generation and propagation of quench induced by a local heat disturbance or by overcurrents in MgB2 Rutherford cables have been studied experimentally. The analysed cable is composed of 12 strands of monocore MgB2/Nb/Cu10Ni wire and has a transposition length of about 27 mm. Measurements of intra- and inter-strand voltages have been performed to analyse the superconducting-to-normal transition behaviour of these cables during quench. In case of external hot-spots, two different time-dynamic regimes have been observed, a slow stage for the formation of the minimum propagation zone (MPZ), and a fast dynamics once the quench is triggered and propagates to the rest of the cable. Significant local variations of the quench propagation velocity across the strands around the MPZ have been observed, but with average quench propagation velocities closely correlated with the predictions given by one-dimensional-geometry models. For quench induced by overcurrents (i.e. with applied currents higher than the critical current) the nucleation of many normal zones distributed within the cable, which overlap during quench propagation, gives a distinctive and faster quench dynamics.
Idioma: Inglés
DOI: 10.1088/1361-6668/aab0c1
Año: 2018
Publicado en: SUPERCONDUCTOR SCIENCE & TECHNOLOGY 31, 4 (2018), 045009 [9 pp]
ISSN: 0953-2048

Factor impacto JCR: 2.489 (2018)
Categ. JCR: PHYSICS, CONDENSED MATTER rank: 31 / 68 = 0.456 (2018) - Q2 - T2
Categ. JCR: PHYSICS, APPLIED rank: 56 / 148 = 0.378 (2018) - Q2 - T2

Factor impacto SCIMAGO: 0.879 - Ceramics and Composites (Q1) - Condensed Matter Physics (Q1) - Metals and Alloys (Q1) - Materials Chemistry (Q1) - Electrical and Electronic Engineering (Q1)

Financiación: info:eu-repo/grantAgreement/ES/MINECO/ENE2014-52105-R
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Cienc.Mater. Ingen.Metal. (Dpto. Ciencia Tecnol.Mater.Fl.)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2022-02-23-11:12:53)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Ciencia de los Materiales e Ingeniería Metalúrgica



 Record created 2018-11-23, last modified 2022-02-23


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)