000075926 001__ 75926
000075926 005__ 20200117212655.0
000075926 0247_ $$2doi$$a10.3390/nano8121010
000075926 0248_ $$2sideral$$a108933
000075926 037__ $$aART-2018-108933
000075926 041__ $$aeng
000075926 100__ $$aSoto-Herranz, María
000075926 245__ $$aEffects of Protonation, Hydroxylamination, and Hydrazination of g-C3N4 on the Performance of Matrimid®/g-C3N4 Membranes
000075926 260__ $$c2018
000075926 5060_ $$aAccess copy available to the general public$$fUnrestricted
000075926 5203_ $$aOne of the challenges to continue improving polymeric membranes properties involves the development of novel chemically modified fillers, such as nitrogen-rich 2-D nanomaterials. Graphitic carbon nitride (g-C3N4) has attracted significant interest as a new class of these fillers. Protonation is known to afford it desirable functionalities to form unique architectures for various applications. In the work presented herein, doping of Matrimid® with protonated g-C3N4 to yield Matrimid®/g-C3N4 mixed matrix membranes was found to improve gas separation by enhancing the selectivity for CO2/CH4 by up to 36.9% at 0.5 wt % filler doping. With a view to further enhancing the contribution of g-C3N4 to the performance of the composite membrane, oxygen plasma and hydrazine monohydrate treatments were also assayed as alternatives to protonation. Hydroxylamination by oxygen plasma treatment increased the selectivity for CO2/CH4 by up to 52.2% (at 2 wt % doping) and that for O2/N2 by up to 26.3% (at 0.5 wt % doping). Hydrazination led to lower enhancements in CO2/CH4 separation, by up to 11.4%. This study suggests that chemically-modified g-C3N4 may hold promise as an additive for modifying the surface of Matrimid® and other membranes.
000075926 536__ $$9info:eu-repo/grantAgreement/EUR/LIFE/15 ENV/ES/000284$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2016-76413-C2-R1$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2016-76413-C2-R2
000075926 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000075926 590__ $$a4.034$$b2018
000075926 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b71 / 293 = 0.242$$c2018$$dQ1$$eT1
000075926 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b39 / 94 = 0.415$$c2018$$dQ2$$eT2
000075926 592__ $$a0.896$$b2018
000075926 593__ $$aMaterials Science (miscellaneous)$$c2018$$dQ1
000075926 593__ $$aChemical Engineering (miscellaneous)$$c2018$$dQ1
000075926 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000075926 700__ $$aSánchez-Báscones, Mercedes
000075926 700__ $$aHérnandez-Giménez, Antonio
000075926 700__ $$aCalvo-Díez, José I.
000075926 700__ $$aMartín-Gil, Jesús
000075926 700__ $$0(orcid)0000-0003-2713-2786$$aMartín Ramos, Pablo$$uUniversidad de Zaragoza
000075926 7102_ $$15011$$2500$$aUniversidad de Zaragoza$$bDpto. CC.Agrar.y Medio Natural$$cArea Ingeniería Agroforestal
000075926 773__ $$g8, 12 (2018), 1010 [13 pp.]$$pNanomaterials  (Basel)$$tNanomaterials$$x2079-4991
000075926 8564_ $$s2502790$$uhttps://zaguan.unizar.es/record/75926/files/texto_completo.pdf$$yVersión publicada
000075926 8564_ $$s104605$$uhttps://zaguan.unizar.es/record/75926/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000075926 909CO $$ooai:zaguan.unizar.es:75926$$particulos$$pdriver
000075926 951__ $$a2020-01-17-21:22:51
000075926 980__ $$aARTICLE