A Multidimensional Data-Driven Sparse Identification Technique: The Sparse Proper Generalized Decomposition
Financiación H2020 / H2020 Funds
Resumen: Sparse model identification by means of data is especially cumbersome if the sought dynamics live in a high dimensional space. This usually involves the need for large amount of data, unfeasible in such a high dimensional settings. This well-known phenomenon, coined as the curse of dimensionality, is here overcome by means of the use of separate representations. We present a technique based on the same principles of the Proper Generalized Decomposition that enables the identification of complex laws in the low-data limit. We provide examples on the performance of the technique in up to ten dimensions.
Idioma: Inglés
DOI: 10.1155/2018/5608286
Año: 2018
Publicado en: Complexity 18, 5608286 (2018), [11 pp]
ISSN: 1076-2787

Factor impacto JCR: 2.591 (2018)
Categ. JCR: MATHEMATICS, INTERDISCIPLINARY APPLICATIONS rank: 21 / 105 = 0.2 (2018) - Q1 - T1
Categ. JCR: MULTIDISCIPLINARY SCIENCES rank: 24 / 69 = 0.348 (2018) - Q2 - T2

Factor impacto SCIMAGO: 0.535 - Multidisciplinary (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA/T24-17R
Financiación: info:eu-repo/grantAgreement/EC/H2020/675919/EU/Empowered decision-making in simulation-based engineering: Advanced Model Reduction for real-time, inverse and optimization in industrial problems/AdMoRe
Financiación: info:eu-repo/grantAgreement/ES/MINECO/DPI2015-72365-EXP
Financiación: info:eu-repo/grantAgreement/ES/MINECO/DPI2017-85139-C2-1-R
Tipo y forma: Article (Published version)
Área (Departamento): Área Mec.Med.Cont. y Teor.Est. (Dpto. Ingeniería Mecánica)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2020-05-13-00:51:29)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2018-12-18, last modified 2020-05-13


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)