Regularity properties of mild solutions for a class of Volterra equation with critical nonlinearities
Resumen: We study a class of abstract nonlinear integral equations of convolution type defined on a Banach space. We prove the existence of a unique, locally mild solution and an extension property when the nonlinear term satisfies a local Lipschitz condition. Moreover, we guarantee the existence of the global mild solution and blow up profiles for a large class of kernels and nonlinearities. If the nonlinearity has critical growth, we prove the existence of the local ¿-mild solution. Our results improve and extend recent results for special classes of kernels corresponding to nonlocal in time equations. We give an example to illustrate the application of the theorems so obtained.
Idioma: Inglés
DOI: 10.1216/JIE-2018-30-2-219
Año: 2018
Publicado en: JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS 30, 2 (2018), 219-256
ISSN: 0897-3962

Factor impacto JCR: 0.974 (2018)
Categ. JCR: MATHEMATICS rank: 98 / 313 = 0.313 (2018) - Q2 - T1
Categ. JCR: MATHEMATICS, APPLIED rank: 149 / 254 = 0.587 (2018) - Q3 - T2

Factor impacto SCIMAGO: 0.384 - Numerical Analysis (Q3) - Applied Mathematics (Q3)

Tipo y forma: Article (Published version)
Área (Departamento): Área Análisis Matemático (Dpto. Matemáticas)
Exportado de SIDERAL (2022-02-08-11:23:25)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > analisis_matematico



 Notice créée le 2019-03-13, modifiée le 2022-02-08


Versión publicada:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)