Over length quantification of the multiaxial mechanical properties of the ascending, descending and abdominal aorta using Digital Image Correlation
Resumen: In this paper, we hypothesize that the biaxial mechanical properties of the aorta may be dependent on arterial location. To demonstrate any possible position-related difference, our study analyzed and compared the biaxial mechanical properties of the ascending thoracic aorta, descending thoracic aorta and infrarenal abdominal aorta stemming from the same porcine subjects, and reported values of constitutive parameters for well-known strain energy functions, showing how these mechanical properties are affected by location along the aorta. When comparing ascending thoracic aorta, descending thoracic aorta and infrarenal abdominal aorta, abdominal tissues were found to be stiffer and highly anisotropic. We found that the aorta changed from a more isotropic to a more anisotropic tissue and became progressively less compliant and stiffer with the distance to the heart. We observed substantial differences in the anisotropy parameter between aortic samples where abdominal samples were more anisotropic and nonlinear than the thoracic samples. The phenomenological model was not able to capture the passive biaxial properties of each specific porcine aorta over a wide range of biaxial deformations, showing the best prediction root mean square error e=0.2621 for ascending thoracic samples and, especially, the worst for the infrarenal abdominal samples e=0.3780. The micro-structured model with Bingham orientation density function was able to better predict biaxial deformations (e=0.1372 for ascending thoracic aorta samples). The root mean square error of the micro-structural model and the micro-structured model with von Mises orientation density function were similar for all positions.
Idioma: Inglés
DOI: 10.1016/j.jmbbm.2017.10.007
Año: 2018
Publicado en: Journal of the Mechanical Behavior of Biomedical Materials 77 (2018), 434-445
ISSN: 1751-6161

Factor impacto JCR: 3.485 (2018)
Categ. JCR: ENGINEERING, BIOMEDICAL rank: 18 / 80 = 0.225 (2018) - Q1 - T1
Categ. JCR: MATERIALS SCIENCE, BIOMATERIALS rank: 13 / 32 = 0.406 (2018) - Q2 - T2

Factor impacto SCIMAGO: 1.037 - Biomaterials (Q1) - Mechanics of Materials (Q1) - Biomedical Engineering (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA/T88
Financiación: info:eu-repo/grantAgreement/ES/ISCIII/CIBER-BBN
Financiación: info:eu-repo/grantAgreement/ES/MINECO/DPI2014-51763-REDT
Financiación: info:eu-repo/grantAgreement/ES/MINECO/DPI2016-76630-C2-1-R
Tipo y forma: Artículo (PrePrint)
Área (Departamento): Área Expresión Gráfica en Ing. (Dpto. Ingeniería Diseño Fabri.)
Área (Departamento): Área Mec.Med.Cont. y Teor.Est. (Dpto. Ingeniería Mecánica)


Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.


Exportado de SIDERAL (2019-11-22-14:46:28)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2019-03-18, última modificación el 2019-11-22


Preprint:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)