000078343 001__ 78343
000078343 005__ 20200117221640.0
000078343 0247_ $$2doi$$a10.1039/c7ja00378a
000078343 0248_ $$2sideral$$a105328
000078343 037__ $$aART-2018-105328
000078343 041__ $$aeng
000078343 100__ $$aJiménez-Lamana, J.
000078343 245__ $$aDetection and characterization of biogenic selenium nanoparticles in selenium-rich yeast by single particle ICPMS
000078343 260__ $$c2018
000078343 5060_ $$aAccess copy available to the general public$$fUnrestricted
000078343 5203_ $$aA method based on single particle inductively coupled plasma mass spectrometry (SP-ICPMS) was developed for the analysis of commercial Se-rich yeasts, to confirm the occurrence of selenium nanoparticles in these food supplements. A considerable reduction of background levels was achieved by combining data acquisition at microsecond dwell times and the use of a H2 reaction cell, improving by a factor of 10 the current state-of-the-art methodology, and bringing size detection limits down to 18 nm for selenium nanoparticles. The presence of nanoparticulate selenium was revealed by size-exclusion chromatography ICPMS, with detection of a selenium peak at the exclusion volume of the column showing absorption at a wavelength corresponding to selenium nanoparticles. SP-ICPMS allowed us to confirm the presence of Se-nanoparticles, as well as to calculate the nanoparticle size distribution, from information about the shape and elemental composition of the nanoparticles obtained by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS), respectively. These results reveal the significance of nanoparticles in the speciation of metals and metalloids in biological samples and the capability of SP-ICPMS in combination with TEM-EDS to carry out these analyses.
000078343 536__ $$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/CTQ2015-68094-C2-1-R
000078343 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000078343 590__ $$a3.646$$b2018
000078343 591__ $$aSPECTROSCOPY$$b4 / 41 = 0.098$$c2018$$dQ1$$eT1
000078343 591__ $$aCHEMISTRY, ANALYTICAL$$b16 / 84 = 0.19$$c2018$$dQ1$$eT1
000078343 592__ $$a0.901$$b2018
000078343 593__ $$aSpectroscopy$$c2018$$dQ1
000078343 593__ $$aAnalytical Chemistry$$c2018$$dQ1
000078343 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000078343 700__ $$0(orcid)0000-0002-7931-3901$$aAbad-Álvaro, I.
000078343 700__ $$aBierla, K.
000078343 700__ $$0(orcid)0000-0002-4169-0357$$aLaborda, F.$$uUniversidad de Zaragoza
000078343 700__ $$aSzpunar, J.
000078343 700__ $$aLobinski, R.
000078343 7102_ $$12009$$2750$$aUniversidad de Zaragoza$$bDpto. Química Analítica$$cÁrea Química Analítica
000078343 773__ $$g33, 3 (2018), 452-460$$pJ. anal. at. spectrom.$$tJournal of Analytical Atomic Spectrometry$$x0267-9477
000078343 8564_ $$s1065205$$uhttps://zaguan.unizar.es/record/78343/files/texto_completo.pdf$$yPostprint
000078343 8564_ $$s45048$$uhttps://zaguan.unizar.es/record/78343/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000078343 909CO $$ooai:zaguan.unizar.es:78343$$particulos$$pdriver
000078343 951__ $$a2020-01-17-22:04:07
000078343 980__ $$aARTICLE