Resumen: The affine group scheme of automorphisms of an evolution algebra e with e 2 is shown to lie in an exact sequence ¿ D ¿ Aut(E) ¿ S, where D, diagonalizable, and S, constant, depend solely on the directed graph associated to e. As a consequence, the Lie algebra of derivations Der(e) (with e 2 = E)is shown to be trivial if the characteristic of the ground field is 0 or 2, and to be abelian, with a precise description, otherwise. Idioma: Inglés DOI: 10.1080/03081087.2019.1598931 Año: 2021 Publicado en: Linear and Multilinear Algebra 69, 2 (2021), 331-342 ISSN: 0308-1087 Factor impacto JCR: 1.178 (2021) Categ. JCR: MATHEMATICS rank: 116 / 333 = 0.348 (2021) - Q2 - T2 Factor impacto CITESCORE: 2.7 - Mathematics (Q2)