Epidemics on plants: Modeling long-range dispersal on spatially embedded networks
Resumen: Here we develop an epidemic model that accounts for long-range dispersal of pathogens between plants. This model generalizes the classical compartmental models–Susceptible-Infected-Susceptible (SIS) and Susceptible-Infected-Recovered (SIR)–to take into account those factors that are key to understand epidemics in real plant populations. These ingredients are the spatial characteristics of the plots and fields in which plants are embedded and the effect of long-range dispersal of pathogens. The spatial characteristics are included through the use of random rectangular graphs which allow to consider the effects of the elongation of plots and fields, while the long-range dispersal is implemented by considering transformations, such as the Mellin and Laplace transforms, of a generalization of the adjacency matrix of the geometric graph. Our results point out that long-range dispersal favors the propagation of pathogens while the elongation of plant plots increases the epidemic threshold and decreases dramatically the number of affected plants. Interestingly, our model is able of reproducing the existence of patchy regions of infected plants and the absence of a clear propagation front centered in the initial infected plants, as it is observed in real plant epidemics.
Idioma: Inglés
DOI: 10.1016/j.jtbi.2018.05.004
Año: 2018
Publicado en: Journal of Theoretical Biology 453 (2018), 1-13
ISSN: 0022-5193

Factor impacto JCR: 1.875 (2018)
Categ. JCR: MATHEMATICAL & COMPUTATIONAL BIOLOGY rank: 24 / 59 = 0.407 (2018) - Q2 - T2
Categ. JCR: BIOLOGY rank: 39 / 87 = 0.448 (2018) - Q2 - T2

Factor impacto SCIMAGO: 0.711 - Agricultural and Biological Sciences (miscellaneous) (Q1) - Applied Mathematics (Q1) - Biochemistry, Genetics and Molecular Biology (miscellaneous) (Q1) - Statistics and Probability (Q1) - Medicine (miscellaneous) (Q1) - Modeling and Simulation (Q1) - Immunology and Microbiology (miscellaneous) (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA-FSE/E19
Financiación: info:eu-repo/grantAgreement/ES/MINECO/FIS2014-55867-P
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Física Teórica (Dpto. Física Teórica)
Área (Departamento): Área Física Materia Condensada (Dpto. Física Materia Condensa.)

Exportado de SIDERAL (2019-11-27-15:47:15)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos



 Notice créée le 2019-05-15, modifiée le 2019-11-27


Postprint:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)