000079517 001__ 79517
000079517 005__ 20201130083154.0
000079517 0247_ $$2doi$$a10.1016/j.aim.2018.04.008
000079517 0248_ $$2sideral$$a106422
000079517 037__ $$aART-2018-106422
000079517 041__ $$aeng
000079517 100__ $$0(orcid)0000-0003-1256-3671$$aAlonso-Gutiérrez, D.$$uUniversidad de Zaragoza
000079517 245__ $$aA characterization of dual quermassintegrals and the roots of dual Steiner polynomials
000079517 260__ $$c2018
000079517 5060_ $$aAccess copy available to the general public$$fUnrestricted
000079517 5203_ $$aLet m=1, (r0=0, r1, …, rm) be a tuple of distinct real numbers and n=2. We provide a characterization of those tuples (¿0, ¿1, …, ¿m) of real numbers such that there exist n-dimensional star bodies K, L with W˜rj(K, L)=¿j, j=0, …, m, where W˜r(K, L) denotes the r-th dual (relative) quermassintegral of K and L. This may be regarded as an analogue within the dual Brunn–Minkowski theory of Shephard''s classification of quermassintegrals of two convex bodies. It turns out that the characterization of dual quermassintegrals is related to the moment problem, and based on this relation, we also derive new determinantal inequalities among the dual quermassintegrals. Moreover, this characterization will be the key tool in order to investigate structural properties of the set of roots of dual Steiner polynomials of star bodies.
000079517 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/MTM2016-77710-P$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/MTM2015-65430-P
000079517 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000079517 590__ $$a1.435$$b2018
000079517 591__ $$aMATHEMATICS$$b43 / 313 = 0.137$$c2018$$dQ1$$eT1
000079517 592__ $$a2.514$$b2018
000079517 593__ $$aMathematics (miscellaneous)$$c2018$$dQ1
000079517 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000079517 700__ $$aHenk, M.
000079517 700__ $$aHernández Cifre, M.A.
000079517 7102_ $$12006$$2015$$aUniversidad de Zaragoza$$bDpto. Matemáticas$$cÁrea Análisis Matemático
000079517 773__ $$g331 (2018), 565-588$$pAdv. math.$$tAdvances in Mathematics$$x0001-8708
000079517 85641 $$uhttp://webs.um.es/mhcifre/preprints/alonso_henk%20dual.pdf$$zTexto completo de la revista
000079517 8564_ $$s283440$$uhttps://zaguan.unizar.es/record/79517/files/texto_completo.pdf$$yPostprint
000079517 8564_ $$s63292$$uhttps://zaguan.unizar.es/record/79517/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000079517 909CO $$ooai:zaguan.unizar.es:79517$$particulos$$pdriver
000079517 951__ $$a2020-11-30-07:56:59
000079517 980__ $$aARTICLE