A characterization of dual quermassintegrals and the roots of dual Steiner polynomials
Resumen: Let m=1, (r0=0, r1, …, rm) be a tuple of distinct real numbers and n=2. We provide a characterization of those tuples (¿0, ¿1, …, ¿m) of real numbers such that there exist n-dimensional star bodies K, L with W˜rj(K, L)=¿j, j=0, …, m, where W˜r(K, L) denotes the r-th dual (relative) quermassintegral of K and L. This may be regarded as an analogue within the dual Brunn–Minkowski theory of Shephard''s classification of quermassintegrals of two convex bodies. It turns out that the characterization of dual quermassintegrals is related to the moment problem, and based on this relation, we also derive new determinantal inequalities among the dual quermassintegrals. Moreover, this characterization will be the key tool in order to investigate structural properties of the set of roots of dual Steiner polynomials of star bodies.
Idioma: Inglés
DOI: 10.1016/j.aim.2018.04.008
Año: 2018
Publicado en: Advances in Mathematics 331 (2018), 565-588
ISSN: 0001-8708

Originalmente disponible en: Texto completo de la revista

Factor impacto JCR: 1.435 (2018)
Categ. JCR: MATHEMATICS rank: 43 / 313 = 0.137 (2018) - Q1 - T1
Factor impacto SCIMAGO: 2.514 - Mathematics (miscellaneous) (Q1)

Financiación: info:eu-repo/grantAgreement/ES/MINECO-FEDER/MTM2015-65430-P
Financiación: info:eu-repo/grantAgreement/ES/MINECO/MTM2016-77710-P
Tipo y forma: Artículo (PostPrint)
Área (Departamento): Área Análisis Matemático (Dpto. Matemáticas)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.


Exportado de SIDERAL (2020-11-30-07:56:59)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2019-07-02, última modificación el 2020-11-30


Postprint:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)