A characterization of dual quermassintegrals and the roots of dual Steiner polynomials
Resumen: Let m=1, (r0=0, r1, …, rm) be a tuple of distinct real numbers and n=2. We provide a characterization of those tuples (¿0, ¿1, …, ¿m) of real numbers such that there exist n-dimensional star bodies K, L with W˜rj(K, L)=¿j, j=0, …, m, where W˜r(K, L) denotes the r-th dual (relative) quermassintegral of K and L. This may be regarded as an analogue within the dual Brunn–Minkowski theory of Shephard''s classification of quermassintegrals of two convex bodies. It turns out that the characterization of dual quermassintegrals is related to the moment problem, and based on this relation, we also derive new determinantal inequalities among the dual quermassintegrals. Moreover, this characterization will be the key tool in order to investigate structural properties of the set of roots of dual Steiner polynomials of star bodies.
Idioma: Inglés
DOI: 10.1016/j.aim.2018.04.008
Año: 2018
Publicado en: Advances in Mathematics 331 (2018), 565-588
ISSN: 0001-8708

Originalmente disponible en: Texto completo de la revista

Factor impacto JCR: 1.435 (2018)
Categ. JCR: MATHEMATICS rank: 43 / 313 = 0.137 (2018) - Q1 - T1
Factor impacto SCIMAGO: 2.514 - Mathematics (miscellaneous) (Q1)

Financiación: info:eu-repo/grantAgreement/ES/MINECO-FEDER/MTM2015-65430-P
Financiación: info:eu-repo/grantAgreement/ES/MINECO/MTM2016-77710-P
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Análisis Matemático (Dpto. Matemáticas)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2020-11-30-07:56:59)

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2019-07-02, last modified 2020-11-30


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)