Triangular and prism-shaped gold-zinc oxide plasmonic nanostructures: in situ reduction, assembly and full-range photocatalytic performance
Financiación H2020 / H2020 Funds
Resumen: Gold-based nanocatalysts have been traditionally selected for multiple homogeneous and heterogeneous reactions of interest involving redox processes. Likewise, greener routes involving more efficient reactors and the use of inexpensive and nature-mimicking excitation sources have boosted the research on photocatalysts able to drive these chemical reactions upon excitation with multiple wavelength sources beyond the UV range. In the present work we report on a multi-step synthesis approach that implies the in situ generation of triangular and prism-shaped gold nanostructures with a localized surface plasmon resonance effect and their direct assembly onto a ZnO nanostructured semiconductor support. Different LED excitation sources in the whole UV-Vis-NIR range have been systematically selected to activate these hybrid materials in the selective reduction of p-nitrophenol (4-NP), a wellknown contaminant by-product. While ZnO becomes preferentially active in the UV window, the anisotropic shape of these gold plasmonic nanostructures helps to broaden the photocatalytic response of ZnO towards the visible and NIR range, being especially active under 460 nm blue light irradiation and expanding their potential application in multiple solar-driven catalytic processes of interest for decontamination and upgrading of toxic chemicals.
Idioma: Inglés
DOI: 10.1002/ejic.201900213
Año: 2019
Publicado en: European Journal of Inorganic Chemistry 2019, 27 (2019), 3228 - 3234
ISSN: 1434-1948

Factor impacto JCR: 2.529 (2019)
Categ. JCR: CHEMISTRY, INORGANIC & NUCLEAR rank: 16 / 45 = 0.356 (2019) - Q2 - T2
Factor impacto SCIMAGO: 0.693 - Inorganic Chemistry (Q1)

Financiación: info:eu-repo/grantAgreement/EC/H2020/742684/EU/Catalytic Dual-Function Devices Against Cancer/CADENCE
Financiación: info:eu-repo/grantAgreement/ES/ISCIII/CIBER-BBN
Financiación: info:eu-repo/grantAgreement/ES/MINECO/CTQ2016-79419-R
Tipo y forma: Article (PostPrint)

Rights Reserved All rights reserved by journal editor


Exportado de SIDERAL (2020-07-16-08:38:53)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2020-02-25, last modified 2020-07-16


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)