Evaluation of patellar contact pressure changes after static versus dynamic medial patellofemoral ligament reconstructions using a finite element model
Resumen: Objectives: To evaluate the effect of various medial patellofemoral ligament (MPFL) fixation techniques on patellar pressure compared with the native knee. Methods: A finite element model of the patellofemoral joint consisting of approximately 30, 700 nodes and 22, 200 elements was created from computed tomography scans of 24 knees with chronic lateral patellar instability. Patellar contact pressures and maximum MPFL graft stress at five positions of flexion (0 degrees, 30 degrees, 60 degrees, 90 degrees, and 120 degrees) were analyzed in three types of MPFL reconstruction (MPFLr): (1) static/anatomic, (2) dynamic, using the adductor magnus tendon (AMT) as the femoral fixation, and (3) dynamic, using the quadriceps tendon as the attachment (medial quadriceps tendon-femoral ligament (MQTFL) reconstruction). Results: In the static/anatomic technique, the patellar contact pressures at 0 degrees and 30 degrees were greater than in the native knee. As in a native knee, the contact pressures at 60 degrees, 90 degrees, and 120 degrees were very low. The maximum MPFL graft stress at 0 degrees and 30 degrees was greater than in a native knee. However, the MPFL graft was loose at 60 degrees, 90 degrees, and 120 degrees, meaning it had no tension. In the dynamic MPFLr using the AMT as a pulley, the patellar contact pressures were like those of a native knee throughout the entire range of motion. However, the maximum stress of the MPFL graft at 0 degrees was less than that of a native ligament. Yet, the maximum MPFL graft stress was greater at 30 degrees than in a native ligament. After 30 degrees of flexion, the MPFL graft loosened, similarly to a native knee. In the dynamic MQTFL reconstruction, the maximum patellar contact pressure was slightly greater than in a normal knee. The maximum stress of the MPFL graft was much greater at 0 degrees and 30 degrees than that of a native MPFL. After 30 degrees of flexion, the MQPFL graft loosened just as in the native knee. Conclusions: The patellar contact pressures after the dynamic MPFLr were like those of the native knee, whereas a static reconstruction resulted in greater pressures, potentially increasing the risk of patellofemoral osteoarthritis in the long term. Therefore, the dynamic MPFLr might be a safer option than a static reconstruction from a biomechanical perspective.
Idioma: Inglés
DOI: 10.3390/jcm8122093
Año: 2019
Publicado en: Journal of Clinical Medicine 8, 12 (2019), 2093 [12 pp.]
ISSN: 2077-0383

Factor impacto JCR: 3.303 (2019)
Categ. JCR: MEDICINE, GENERAL & INTERNAL rank: 36 / 165 = 0.218 (2019) - Q1 - T1
Financiación: info:eu-repo/grantAgreement/ES/MICINN/DPI2016-80283-C2-2-R
Tipo y forma: Article (Published version)
Área (Departamento): Área Mec.Med.Cont. y Teor.Est. (Dpto. Ingeniería Mecánica)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2023-09-13-10:50:25)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2020-03-24, last modified 2023-09-14


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)