Mathematical modeling of temperature and pressure effects on permeability, diffusivity and solubility in polymeric and mixed matrix membranes
Resumen: Due to the temperature and pressure dependency of gas transport through polymeric and mixed matrix membranes, probing of their separation performance at different operational conditions seems crucial to determine an optimal operational condition. To minimize the number of costly and time consuming experiments, a modified form of van''t Hoff-Arrhenius model was developed to consider the simultaneous effects of temperature and pressure on the separation performance of polymeric and mixed matrix membranes. Moreover, the proposed model is capable to consider pressure dependency of energetic parameters of Arrhenius model including activation energies of permeability and diffusivity, heat of sorption and the corresponding pre-exponential factors. The validity of the proposed model was investigated by using permeation coefficients of CO 2 and N 2 in a binary mixture through 6FDA-DAM at different temperatures in the range of 35–55 °C and in the feed pressure range from 2 to 5 atm. Besides, from data taken from the literature, the proposed model was validated by the prediction of temperature and pressure dependency of transport properties of glassy and rubbery polymers as well as mixed matrix membranes (MMMs) for different gas molecules including He, H 2 , CO 2 , O 2 , N 2 , CH 4 and C 4 H 10 . Predictions corresponding to 300 data points revealed that the maximum average absolute relative error was 5.1%.
Idioma: Inglés
DOI: 10.1016/j.ces.2019.04.037
Año: 2019
Publicado en: CHEMICAL ENGINEERING SCIENCE 205 (2019), 58-73
ISSN: 0009-2509

Factor impacto JCR: 3.871 (2019)
Categ. JCR: ENGINEERING, CHEMICAL rank: 35 / 143 = 0.245 (2019) - Q1 - T1
Factor impacto SCIMAGO: 0.998 - Applied Mathematics (Q1) - Industrial and Manufacturing Engineering (Q1) - Chemistry (miscellaneous) (Q1) - Chemical Engineering (miscellaneous) (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA-FSE/T43-17R
Financiación: info:eu-repo/grantAgreement/ES/MINECO-FEDER/MAT2016-77290-R
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Ingeniería Química (Dpto. Ing.Quím.Tecnol.Med.Amb.)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2020-07-16-08:47:42)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2020-04-28, last modified 2020-07-16


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)