000089557 001__ 89557
000089557 005__ 20200716101538.0
000089557 0247_ $$2doi$$a10.1007/s10237-019-01170-0
000089557 0248_ $$2sideral$$a116093
000089557 037__ $$aART-2019-116093
000089557 041__ $$aeng
000089557 100__ $$0(orcid)0000-0002-4268-7424$$aPeña Baquedano, Juan Antonio$$uUniversidad de Zaragoza
000089557 245__ $$aFailure damage mechanical properties of thoracic and abdominal porcine aorta layers and related constitutive modeling: phenomenological and microstructural approach
000089557 260__ $$c2019
000089557 5060_ $$aAccess copy available to the general public$$fUnrestricted
000089557 5203_ $$aDespite increasing experimental and analytical efforts to investigate the irreversible effects of arterial tissue failure, the underlying mechanisms are still poorly understood. The goal of this study was to characterize the failure properties of the intact wall and each separated layer (intima, media, and adventitia) of the descending thoracic and infrarenal abdominal aorta and to test the hypothesis that the failure properties of layer-separated tissue depend on the location of the aorta. To test this hypothesis, we performed uniaxial tests to study the mechanical behavior of both intact and layer-separated porcine aortic tissue samples taken from descending thoracic and infrarenal abdominal aorta until complete failure. The fracture stress is higher in the infrarenal abdominal aorta than in the equivalent descending thoracic aorta. It was also found that the extrapolation of the elastic mechanical properties from the physiological to the supra-physiological regime for characterizing the mechanical response of the aorta would be inappropriate. Finally, we report values of constitutive parameters using phenomenological and microstructural damage models based on continuum damage mechanics theory. The phenomenological damage model gives an excellent fit to the experimental data compared to the microstructural damage model. Although the fitting results of the phenomenological model are better, the microstructural models can include physically motivated aspects obtained from experiments.
000089557 536__ $$9info:eu-repo/grantAgreement/ES/CSIC-IMB-CNM/ICTS NANBIOSIS-SU8 Unit-CIBER-BBN$$9info:eu-repo/grantAgreement/ES/DGA/T24-17R$$9info:eu-repo/grantAgreement/ES/MINECO/DPI2016-76630-C2-1-R
000089557 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000089557 590__ $$a2.527$$b2019
000089557 591__ $$aENGINEERING, BIOMEDICAL$$b42 / 87 = 0.483$$c2019$$dQ2$$eT2
000089557 591__ $$aBIOPHYSICS$$b34 / 71 = 0.479$$c2019$$dQ2$$eT2
000089557 592__ $$a0.85$$b2019
000089557 593__ $$aMechanical Engineering$$c2019$$dQ1
000089557 593__ $$aModeling and Simulation$$c2019$$dQ1
000089557 593__ $$aBiotechnology$$c2019$$dQ2
000089557 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000089557 700__ $$0(orcid)0000-0002-8375-0354$$aMartínez, Miguel A.$$uUniversidad de Zaragoza
000089557 700__ $$0(orcid)0000-0002-0664-5024$$aPeña, Estefanía$$uUniversidad de Zaragoza
000089557 7102_ $$15002$$2305$$aUniversidad de Zaragoza$$bDpto. Ingeniería Diseño Fabri.$$cÁrea Expresión Gráfica en Ing.
000089557 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000089557 773__ $$g18, 6 (2019), 1709-1730$$pBiomech. model. mechanobiol.$$tBIOMECHANICS AND MODELING IN MECHANOBIOLOGY$$x1617-7959
000089557 8564_ $$s2623318$$uhttps://zaguan.unizar.es/record/89557/files/texto_completo.pdf$$yPostprint
000089557 8564_ $$s497949$$uhttps://zaguan.unizar.es/record/89557/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000089557 909CO $$ooai:zaguan.unizar.es:89557$$particulos$$pdriver
000089557 951__ $$a2020-07-16-09:38:36
000089557 980__ $$aARTICLE