000089694 001__ 89694
000089694 005__ 20210902121710.0
000089694 0247_ $$2doi$$a10.3390/nano10040616
000089694 0248_ $$2sideral$$a117828
000089694 037__ $$aART-2020-117828
000089694 041__ $$aeng
000089694 100__ $$0(orcid)0000-0002-0272-3152$$aGámez, Enrique
000089694 245__ $$aAntibacterial effect of thymol loaded SBA-15 nanorods incorporated in PCL electrospun fibers
000089694 260__ $$c2020
000089694 5060_ $$aAccess copy available to the general public$$fUnrestricted
000089694 5203_ $$aFor the effective management of infected chronic wounds, the incorporation of antimicrobial drugs into wound dressings can increase their local availability at the infection site. Mesoporous silicon dioxide SBA-15 is an excellent drug carrier with tunable drug release kinetics. In this work, synthesized SBA-15 loaded with the natural antimicrobial compound thymol (THY) was incorporated into polycaprolactone (PCL) electrospun nanofibers to obtain an advanced wound dressing. Rod-shaped particles with internal parallel channels oriented along the longitudinal axis (diameter: 138 ± 30 nm, length: 563 ± 100 nm) were loaded with 70.8 wt.% of THY. Fiber mats were prepared using these particles as nanofillers within polycaprolactone (PCL) electrospun fibers. The resulting mats contained 5.6 wt.% of THY and more than half of this loading was released in the first 7 h. This release would prevent an initial bacterial colonization and also inhibit or eliminate bacterial growth as in vitro shown against Staphylococcus aureus ATCC 25923. Minimal inhibitory concentration (MIC: 0.07 mg/mL) and minimal bactericidal concentration (MBC: 0.11 mg/mL) of released THY were lower than the amount of free THY required, demonstrating the benefit of drug encapsulation for a more efficient bactericidal capacity due to the direct contact between mats and bacteria.
000089694 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/CTQ2014-52384-R$$9info:eu-repo/grantAgreement/EC/FP7/614715/EU/A Photo-triggered On-demand Drug Delivery System for Chronic Pain/NANOHEDONISM
000089694 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000089694 590__ $$a5.076$$b2020
000089694 591__ $$aPHYSICS, APPLIED$$b35 / 160 = 0.219$$c2020$$dQ1$$eT1
000089694 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b51 / 106 = 0.481$$c2020$$dQ2$$eT2
000089694 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b55 / 178 = 0.309$$c2020$$dQ2$$eT1
000089694 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b103 / 333 = 0.309$$c2020$$dQ2$$eT1
000089694 592__ $$a0.919$$b2020
000089694 593__ $$aMaterials Science (miscellaneous)$$c2020$$dQ1
000089694 593__ $$aChemical Engineering (miscellaneous)$$c2020$$dQ1
000089694 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000089694 700__ $$aElizondo-Castillo, Hellen
000089694 700__ $$aTascon, Jorge
000089694 700__ $$0(orcid)0000-0002-0595-5514$$aGarcía-Salinas, Sara$$uUniversidad de Zaragoza
000089694 700__ $$0(orcid)0000-0003-3363-2912$$aNavascues, Nuria
000089694 700__ $$0(orcid)0000-0003-2293-363X$$aMendoza, Gracia$$uUniversidad de Zaragoza
000089694 700__ $$0(orcid)0000-0003-3165-0156$$aArruebo, Manuel$$uUniversidad de Zaragoza
000089694 700__ $$0(orcid)0000-0002-2966-9088$$aIrusta, Silvia$$uUniversidad de Zaragoza
000089694 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000089694 7102_ $$15005$$2790$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Tecnologi. Medio Ambiente
000089694 773__ $$g10, 4 (2020), 616 [13 pp.]$$pNanomaterials  (Basel)$$tNanomaterials$$x2079-4991
000089694 8564_ $$s961301$$uhttps://zaguan.unizar.es/record/89694/files/texto_completo.pdf$$yVersión publicada
000089694 8564_ $$s472331$$uhttps://zaguan.unizar.es/record/89694/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000089694 909CO $$ooai:zaguan.unizar.es:89694$$particulos$$pdriver
000089694 951__ $$a2021-09-02-09:20:17
000089694 980__ $$aARTICLE