000089782 001__ 89782
000089782 005__ 20210902121658.0
000089782 0247_ $$2doi$$a10.3390/app10062068
000089782 0248_ $$2sideral$$a117893
000089782 037__ $$aART-2020-117893
000089782 041__ $$aeng
000089782 100__ $$0(orcid)0000-0002-1490-6423$$aDufo-López, R.$$uUniversidad de Zaragoza
000089782 245__ $$aSpecial issue on standalone renewable energy system: Modeling and controlling
000089782 260__ $$c2020
000089782 5060_ $$aAccess copy available to the general public$$fUnrestricted
000089782 5203_ $$a1. Introduction
Standalone (off-grid) renewable energy systems supply electricity in places where there is no access to a standard electrical grid. These systems may include photovoltaic generators, wind turbines, hydro turbines or any other renewable electrical generator. Usually this kind of system includes electricity storage (commonly, lead-acid batteries, but also other types of storage can be used, such as lithium batteries, other battery technologies, supercapacitors and hydrogen). In some cases, a backup generator (usually powered by fossil fuel, diesel or gasoline) is part of the hybrid system.
Low-power standalone systems are usually called off-grid systems and typically power single households by diesel generators or by solar photovoltaic (PV) systems (solar home systems) [1]. Systems of higher power are called micro- or mini-grids, which can supply several households or even a whole village. Mini- or micro-grids, powered by renewable sources, can be classified as smart grids, allowing information exchange between the consumers and the distributed generation [2].
The modelling of the components, the control of the system and the simulation of the performance of the whole system are necessary to evaluate the system technically and economically. The optimization of the sizing and/or the control is also an important task in this kind of systems...
000089782 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000089782 590__ $$a2.679$$b2020
000089782 591__ $$aPHYSICS, APPLIED$$b73 / 160 = 0.456$$c2020$$dQ2$$eT2
000089782 591__ $$aENGINEERING, MULTIDISCIPLINARY$$b38 / 91 = 0.418$$c2020$$dQ2$$eT2
000089782 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b101 / 178 = 0.567$$c2020$$dQ3$$eT2
000089782 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b201 / 333 = 0.604$$c2020$$dQ3$$eT2
000089782 592__ $$a0.435$$b2020
000089782 593__ $$aComputer Science Applications$$c2020$$dQ2
000089782 593__ $$aEngineering (miscellaneous)$$c2020$$dQ2
000089782 593__ $$aProcess Chemistry and Technology$$c2020$$dQ2
000089782 593__ $$aInstrumentation$$c2020$$dQ2
000089782 593__ $$aMaterials Science (miscellaneous)$$c2020$$dQ2
000089782 593__ $$aFluid Flow and Transfer Processes$$c2020$$dQ2
000089782 655_4 $$ainfo:eu-repo/semantics/other$$vinfo:eu-repo/semantics/publishedVersion
000089782 700__ $$0(orcid)0000-0003-2813-1240$$aBernal-Agustín, J.L.$$uUniversidad de Zaragoza
000089782 7102_ $$15009$$2535$$aUniversidad de Zaragoza$$bDpto. Ingeniería Eléctrica$$cÁrea Ingeniería Eléctrica
000089782 773__ $$g10, 6 (2020), 2068 [2 pp]$$pAppl. sci.$$tAPPLIED SCIENCES-BASEL$$x2076-3417
000089782 8564_ $$s149756$$uhttps://zaguan.unizar.es/record/89782/files/texto_completo.pdf$$yVersión publicada
000089782 8564_ $$s491109$$uhttps://zaguan.unizar.es/record/89782/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000089782 909CO $$ooai:zaguan.unizar.es:89782$$particulos$$pdriver
000089782 951__ $$a2021-09-02-09:12:20
000089782 980__ $$aARTICLE