Scientific machine learning for coarse-grained constitutive models
Resumen: We present here a review on some of our latest works concerning the development of thermodynamics-aware machine learning strategies for the data-driven construction of constitutive models. We suggest a methodology constructed upon three main ingredients. (i) the employ of manifold learning strategies to unveil the true dimensionality of data, thus pointing out the need for the definition of “internal” variables, different of the experimental ones. (ii) the process will be described by the so-called General Equation for the Non-Equilibrium Reversible-Irreversible Coupling (GENERIC). (iii) the precise form of the GENERIC terms will be unveiled by regression of data.
Idioma: Inglés
DOI: 10.1016/j.promfg.2020.04.211
Año: 2020
Publicado en: Procedia Manufacturing 47 (2020), 693-695
ISSN: 2351-9789

Factor impacto SCIMAGO: 0.504 - Industrial and Manufacturing Engineering (Q2) - Artificial Intelligence (Q2)

Tipo y forma: Article (Published version)
Área (Departamento): Área Mec.Med.Cont. y Teor.Est. (Dpto. Ingeniería Mecánica)
Exportado de SIDERAL (2023-09-13-10:51:50)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > mec._de_medios_continuos_y_teor._de_estructuras



 Notice créée le 2020-06-25, modifiée le 2023-09-14


Versión publicada:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)