Electrocardiogram derived respiratory rate using a wearable armband

Lázaro, Jesús (Universidad de Zaragoza) ; Reljin, Natasa ; Bailón, Raquel (Universidad de Zaragoza) ; Gil, Eduardo (Universidad de Zaragoza) ; Noh, Yeonsik ; Laguna, Pablo (Universidad de Zaragoza) ; Chon, Ki H.
Electrocardiogram derived respiratory rate using a wearable armband
Financiación H2020 / H2020 Funds
Resumen: A method for deriving respiratory rate from an armband, which records three-channel electrocardiogram (ECG) using three pairs of dry (no hydrogel) electrodes, is presented. The armband device is especially convenient for long-term (months-years) monitoring because it does not use obstructive leads nor hydrogels/adhesives, which cause skin irritation even after few days. An ECG-derived respiration (EDR) based on respiration-related modulation of QRS slopes and R-wave angle approach was used. Moreover, we modified the EDR algorithm to lower the computational cost. Respiratory rates were estimated with the armband-ECG and the reference plethysmography-based respiration signals from 15 subjects who underwent breathing experiment consisting of five stages of controlled breathing (at 0.1, 0.2, 0.3, 0.4, and 0.5 Hz) and one stage of spontaneous breathing. The respiratory rates from the armband obtained a relative error with respect to the reference (respiratory rate estimated from the plethysmography-based respiration signal) that was not higher than 2.26% in median nor interquartile range (IQR) for all stages of fixed and spontaneous breathing, and not higher than 3.57% in median nor IQR in the case when the low computational cost algorithm was applied. These results demonstrate that respiration-related modulation of the ECG morphology are also present in the armband ECG device. Furthermore, these results suggest that respiration-related modulation can be exploited by the EDR method based on QRS slopes and R-wave angles to obtain respiratory rate, which may have a wide range of applications including monitoring patients with chronic respiratory diseases, epileptic seizures detection, stress assessment, and sleep studies, among others.
Idioma: Inglés
DOI: 10.1109/TBME.2020.3004730
Año: 2020
Publicado en: IEEE Transactions on Biomedical Engineering 68, 3 (2020), 1056 - 1065
ISSN: 0018-9294

Factor impacto JCR: 4.538 (2020)
Categ. JCR: ENGINEERING, BIOMEDICAL rank: 24 / 90 = 0.267 (2020) - Q2 - T1
Factor impacto SCIMAGO: 1.147 - Biomedical Engineering (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA-FSE/T96-BSICoS
Financiación: info:eu-repo/grantAgreement/EC/H2020/745755/EU/Wearable Cardiorespiratory Monitor/WECARMON
Financiación: info:eu-repo/grantAgreement/ES/MINECO-FEDER/RTI2018-097723-B-I00
Tipo y forma: Artículo (PostPrint)
Área (Departamento): Área Ingen.Sistemas y Automát. (Dpto. Informát.Ingenie.Sistms.)
Área (Departamento): Área Teoría Señal y Comunicac. (Dpto. Ingeniería Electrón.Com.)


Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2022-04-26-08:52:17)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2020-06-29, última modificación el 2022-04-26


Postprint:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)