Microflow nanoprecipitation of positively charged gastroresistant polymer nanoparticles of Eudragit® RS100: A study of fluid dynamics and chemical parameters
Resumen: The objective of the present work was to produce gastroresistant Eudragit® RS100 nanoparticles by a reproducible synthesis approach that ensured mono-disperse nanoparticles under the size of 100 nm. Batch and micromixing nanoprecipitation approaches were selected to produce the demanded nanoparticles, identifying the critical parameters affecting the synthesis process. To shed some light on the formulation of the targeted nanoparticles, the effects of particle size and homogeneity of fluid dynamics, and physicochemical parameters such as polymer concentration, type of solvent, ratio of solvent to antisolvent, and total flow rate were studied. The physicochemical characteristics of resulting nanoparticles were studied applying dynamic light scattering (DLS) particle size analysis and electron microscopy imaging. Nanoparticles produced using a micromixer demonstrated a narrower and more homogenous distribution than the ones obtained under similar conditions in conventional batch reactors. Besides, fluid dynamics ensured that the best mixing conditions were achieved at the highest flow rate. It was concluded that nucleation and growth events must also be considered to avoid uncontrolled nanoparticle growth and evolution at the collection vial. Further, rifampicin-encapsulated nanoparticles were prepared using both approaches, demonstrating that the micromixing-assisted approach provided an excellent control of the particle size and polydispersity index. Not only the micromixing-assisted nanoprecipitation promoted a remarkable control in the nanoparticle formulation, but also it enhanced drug encapsulation efficiency and loading, as well as productivity. To the best of our knowledge, this was the very first time that drug-loaded Eudragit® RS100 nanoparticles (NPs) were produced in a continuous fashion under 100 nm (16.5 ± 4.3 nm) using microreactor technology. Furthermore, we performed a detailed analysis of the influence of various fluid dynamics and physicochemical parameters on the size and uniformity of the resulting nanoparticles. According to these findings, the proposed methodology can be a useful approach to synthesize a myriad of nanoparticles of alternative polymers.
Idioma: Inglés
DOI: 10.3390/ma13132925
Año: 2020
Publicado en: MATERIALS 13, 13 (2020), 2925 [23 pp.]
ISSN: 1996-1944

Factor impacto JCR: 3.623 (2020)
Categ. JCR: METALLURGY & METALLURGICAL ENGINEERING rank: 17 / 80 = 0.213 (2020) - Q1 - T1
Categ. JCR: MATERIALS SCIENCE, MULTIDISCIPLINARY rank: 152 / 333 = 0.456 (2020) - Q2 - T2
Categ. JCR: PHYSICS, CONDENSED MATTER rank: 27 / 69 = 0.391 (2020) - Q2 - T2
Categ. JCR: PHYSICS, APPLIED rank: 51 / 160 = 0.319 (2020) - Q2 - T1
Categ. JCR: CHEMISTRY, PHYSICAL rank: 79 / 162 = 0.488 (2020) - Q2 - T2

Factor impacto SCIMAGO: 0.682 - Materials Science (miscellaneous) (Q2) - Condensed Matter Physics (Q2)

Financiación: info:eu-repo/grantAgreement/ES/MICINN/RTI2018-099019-A-I00
Financiación: info:eu-repo/grantAgreement/ES/MINECO/CTQ2017-84473-R
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Ingeniería Química (Dpto. Ing.Quím.Tecnol.Med.Amb.)
Área (Departamento): Área Tecnologi. Medio Ambiente (Dpto. Ing.Quím.Tecnol.Med.Amb.)


Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2021-09-02-10:14:09)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2020-09-10, última modificación el 2021-09-02


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)