000095396 001__ 95396
000095396 005__ 20210902121743.0
000095396 0247_ $$2doi$$a10.1103/PHYSREVAPPLIED.13.064071
000095396 0248_ $$2sideral$$a118921
000095396 037__ $$aART-2020-118921
000095396 041__ $$aeng
000095396 100__ $$aSuárez, I.
000095396 245__ $$aMechanisms of Spontaneous and Amplified Spontaneous Emission in CH3 NH3 Pb I3 Perovskite Thin Films Integrated in an Optical Waveguide
000095396 260__ $$c2020
000095396 5060_ $$aAccess copy available to the general public$$fUnrestricted
000095396 5203_ $$aIn this paper, the physical mechanisms responsible for optical gain in CH3NH3PbI3 (MAPI) polycrystalline thin films are investigated experimentally and theoretically. Waveguide structures composed by a MAPI film embedded in between PMMA and silica layers are used as an efficient geometry to confine emitted light in MAPI films and minimize the energy threshold for amplified spontaneous emission (ASE). We show that photogenerated exciton density at the ASE threshold is as low as (2.4-12)×1016cm-3, which is below the Mott transition density reported for this material and the threshold transparency condition deduced with the free-carrier model. Such a low threshold indicates that the formation of excitons plays an important role in the generation of optical gain in MAPI films. The rate-equation model including gain is incorporated into a beam-propagation algorithm to describe waveguided spontaneous emission and ASE in MAPI films, while using the optical parameters experimentally determined in this work. This model is a useful tool to design active photonic devices based on MAPI and other metal-halide semiconductors.
000095396 536__ $$9info:eu-repo/grantAgreement/EC/H2020/724424/EU/Boosting Photovoltaic Performance by the Synergistic Interaction of Halide Perovskites and Semiconductor Quantum Dots/No-LIMIT$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 724424-No-LIMIT$$9info:eu-repo/grantAgreement/ES/MICINN/TEC2017-86102-C2-1-R$$9info:eu-repo/grantAgreement/ES/MINECO/ENE2017-90565-REDT
000095396 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000095396 590__ $$a4.985$$b2020
000095396 591__ $$aPHYSICS, APPLIED$$b36 / 160 = 0.225$$c2020$$dQ1$$eT1
000095396 592__ $$a1.883$$b2020
000095396 593__ $$aPhysics and Astronomy (miscellaneous)$$c2020$$dQ1
000095396 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000095396 700__ $$0(orcid)0000-0001-6040-1920$$aJuárez-Pérez, E.J.$$uUniversidad de Zaragoza
000095396 700__ $$aChirvony, V.S.
000095396 700__ $$aMora-Seró, I.
000095396 700__ $$aMartínez-Pastor, J.P.
000095396 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000095396 773__ $$g13, 6 (2020), 064071 [15 pp]$$pPhys. rev. appl.$$tPhysical Review Applied$$x2331-7019
000095396 8564_ $$s1537215$$uhttps://zaguan.unizar.es/record/95396/files/texto_completo.pdf$$yVersión publicada
000095396 8564_ $$s19540$$uhttps://zaguan.unizar.es/record/95396/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000095396 909CO $$ooai:zaguan.unizar.es:95396$$particulos$$pdriver
000095396 951__ $$a2021-09-02-09:43:35
000095396 980__ $$aARTICLE