Compact integration rules as a quadrature method with some applications
Resumen: In many instances of computational science and engineering the value of a definite integral of a known function f(x) is required in an interval. Nowadays there are plenty of methods that provide this quantity with a given accuracy. In one way or another, all of them assume an interpolating function, usually polynomial, that represents the original function either locally or globally. This paper presents a new way of calculating ¿x1 x2f(x)dx by means of compact integration, in a similar way to the compact differentiation employed in computational physics and mathematics. Compact integration is a linear combination of definite integrals associated to an interval and its adjacent ones, written in terms of nodal values of f(x). The coefficients that multiply both the integrals and f(x) at the nodes are obtained by matching terms in a Taylor series expansion. In this implicit method a system of algebraic equations is solved, where the vector of unknowns contains the integrals in each interval of a uniform discrete domain. As a result the definite integral over the whole domain is the sum of all these integrals. In this paper the mathematical tool is analyzed by deriving the appropriate coefficients for a given accuracy, and is exploited in various numerical examples and applications. The great accuracy of the method is highlighted.
Idioma: Inglés
DOI: 10.1016/j.camwa.2019.08.038
Año: 2019
Publicado en: COMPUTERS & MATHEMATICS WITH APPLICATIONS 79, 5 (2019), 1241-1265
ISSN: 0898-1221

Factor impacto JCR: 3.37 (2019)
Categ. JCR: MATHEMATICS, APPLIED rank: 8 / 260 = 0.031 (2019) - Q1 - T1
Factor impacto SCIMAGO: 1.214 - Computational Mathematics (Q1) - Modeling and Simulation (Q1) - Computational Theory and Mathematics (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA-FEDER/Construyendo Europa desde Aragón
Tipo y forma: Artículo (PostPrint)
Área (Departamento): Área Mecánica de Fluidos (Dpto. Ciencia Tecnol.Mater.Fl.)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.


Exportado de SIDERAL (2020-11-13-08:47:38)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2020-09-22, última modificación el 2020-11-13


Postprint:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)