Asymptotic normality for random simplices and convex bodies in high dimensions
Resumen: Central limit theorems for the log-volume of a class of random convex bodies in $ \mathbb{R}^n$ are obtained in the high-dimensional regime, that is, as $ n\to \infty $. In particular, the case of random simplices pinned at the origin and simplices where all vertices are generated at random is investigated. The coordinates of the generating vectors are assumed to be independent and identically distributed with subexponential tails. In addition, asymptotic normality is also established for random convex bodies (including random simplices pinned at the origin) when the spanning vectors are distributed according to a radially symmetric probability measure on the $ n$-dimensional $ \ell _p$-ball. In particular, this includes the cone and the uniform probability measure.
Idioma: Inglés
DOI: 10.1090/proc/15232
Año: 2021
Publicado en: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY 149 (2021), 355-367
ISSN: 0002-9939

Factor impacto JCR: 0.971 (2021)
Categ. JCR: MATHEMATICS rank: 166 / 333 = 0.498 (2021) - Q2 - T2
Categ. JCR: MATHEMATICS, APPLIED rank: 207 / 267 = 0.775 (2021) - Q4 - T3

Factor impacto CITESCORE: 1.7 - Mathematics (Q3)

Factor impacto SCIMAGO: 0.891 - Mathematics (miscellaneous) (Q1) - Applied Mathematics (Q1)

Tipo y forma: Article (PostPrint)
Área (Departamento): Área Análisis Matemático (Dpto. Matemáticas)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2023-05-18-13:29:54)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Análisis Matemático



 Record created 2020-10-19, last modified 2023-05-19


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)