Nanofabrication techniques in large-area molecular electronic devices

Herrer, L. (Universidad de Zaragoza) ; Martín, S. (Universidad de Zaragoza) ; Cea, P. (Universidad de Zaragoza)
Nanofabrication techniques in large-area molecular electronic devices
Resumen: The societal impact of the electronics industry is enormous-not to mention how this industry impinges on the global economy. The foreseen limits of the current technology-technical, economic, and sustainability issues-open the door to the search for successor technologies. In this context, molecular electronics has emerged as a promising candidate that, at least in the short-term, will not likely replace our silicon-based electronics, but improve its performance through a nascent hybrid technology. Such technology will take advantage of both the small dimensions of the molecules and new functionalities resulting from the quantum effects that govern the properties at the molecular scale. An optimization of interface engineering and integration of molecules to form densely integrated individually addressable arrays of molecules are two crucial aspects in the molecular electronics field. These challenges should be met to establish the bridge between organic functional materials and hard electronics required for the incorporation of such hybrid technology in the market. In this review, the most advanced methods for fabricating large-area molecular electronic devices are presented, highlighting their advantages and limitations. Special emphasis is focused on bottom-up methodologies for the fabrication of well-ordered and tightly-packed monolayers onto the bottom electrode, followed by a description of the top-contact deposition methods so far used.
Idioma: Inglés
DOI: 10.3390/app10176064
Año: 2020
Publicado en: APPLIED SCIENCES-BASEL 10, 17 (2020), 6064 [42 pp]
ISSN: 2076-3417

Factor impacto JCR: 2.679 (2020)
Categ. JCR: PHYSICS, APPLIED rank: 73 / 160 = 0.456 (2020) - Q2 - T2
Categ. JCR: ENGINEERING, MULTIDISCIPLINARY rank: 38 / 91 = 0.418 (2020) - Q2 - T2
Categ. JCR: CHEMISTRY, MULTIDISCIPLINARY rank: 101 / 178 = 0.567 (2020) - Q3 - T2
Categ. JCR: MATERIALS SCIENCE, MULTIDISCIPLINARY rank: 201 / 333 = 0.604 (2020) - Q3 - T2

Factor impacto SCIMAGO: 0.435 - Computer Science Applications (Q2) - Engineering (miscellaneous) (Q2) - Process Chemistry and Technology (Q2) - Instrumentation (Q2) - Materials Science (miscellaneous) (Q2) - Fluid Flow and Transfer Processes (Q2)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E31-20R
Financiación: info:eu-repo/grantAgreement/ES/DGA-FEDER/Construyendo Europa desde Aragón
Financiación: info:eu-repo/grantAgreement/ES/DGA/LMP33-18
Financiación: info:eu-repo/grantAgreement/ES/MINECO-FEDER/MAT2016-78257-R
Financiación: info:eu-repo/grantAgreement/ES/MINECO-FEDER/PID2019-105881RB-I00
Tipo y forma: Revisión (Versión definitiva)
Área (Departamento): Área Química Física (Dpto. Química Física)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2021-09-02-09:28:35)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2020-10-19, última modificación el 2021-09-02


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)