000095778 001__ 95778
000095778 005__ 20210902121721.0
000095778 0247_ $$2doi$$a10.3390/app10176064
000095778 0248_ $$2sideral$$a120216
000095778 037__ $$aART-2020-120216
000095778 041__ $$aeng
000095778 100__ $$0(orcid)0000-0002-3576-5156$$aHerrer, L.$$uUniversidad de Zaragoza
000095778 245__ $$aNanofabrication techniques in large-area molecular electronic devices
000095778 260__ $$c2020
000095778 5060_ $$aAccess copy available to the general public$$fUnrestricted
000095778 5203_ $$aThe societal impact of the electronics industry is enormous-not to mention how this industry impinges on the global economy. The foreseen limits of the current technology-technical, economic, and sustainability issues-open the door to the search for successor technologies. In this context, molecular electronics has emerged as a promising candidate that, at least in the short-term, will not likely replace our silicon-based electronics, but improve its performance through a nascent hybrid technology. Such technology will take advantage of both the small dimensions of the molecules and new functionalities resulting from the quantum effects that govern the properties at the molecular scale. An optimization of interface engineering and integration of molecules to form densely integrated individually addressable arrays of molecules are two crucial aspects in the molecular electronics field. These challenges should be met to establish the bridge between organic functional materials and hard electronics required for the incorporation of such hybrid technology in the market. In this review, the most advanced methods for fabricating large-area molecular electronic devices are presented, highlighting their advantages and limitations. Special emphasis is focused on bottom-up methodologies for the fabrication of well-ordered and tightly-packed monolayers onto the bottom electrode, followed by a description of the top-contact deposition methods so far used.
000095778 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E31-20R$$9info:eu-repo/grantAgreement/ES/DGA-FEDER/Construyendo Europa desde Aragón$$9info:eu-repo/grantAgreement/ES/DGA/LMP33-18$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/MAT2016-78257-R$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/PID2019-105881RB-I00
000095778 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000095778 590__ $$a2.679$$b2020
000095778 591__ $$aPHYSICS, APPLIED$$b73 / 160 = 0.456$$c2020$$dQ2$$eT2
000095778 591__ $$aENGINEERING, MULTIDISCIPLINARY$$b38 / 91 = 0.418$$c2020$$dQ2$$eT2
000095778 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b101 / 178 = 0.567$$c2020$$dQ3$$eT2
000095778 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b201 / 333 = 0.604$$c2020$$dQ3$$eT2
000095778 592__ $$a0.435$$b2020
000095778 593__ $$aComputer Science Applications$$c2020$$dQ2
000095778 593__ $$aEngineering (miscellaneous)$$c2020$$dQ2
000095778 593__ $$aProcess Chemistry and Technology$$c2020$$dQ2
000095778 593__ $$aInstrumentation$$c2020$$dQ2
000095778 593__ $$aMaterials Science (miscellaneous)$$c2020$$dQ2
000095778 593__ $$aFluid Flow and Transfer Processes$$c2020$$dQ2
000095778 655_4 $$ainfo:eu-repo/semantics/review$$vinfo:eu-repo/semantics/publishedVersion
000095778 700__ $$0(orcid)0000-0001-9193-3874$$aMartín, S.$$uUniversidad de Zaragoza
000095778 700__ $$0(orcid)0000-0002-4729-9578$$aCea, P.$$uUniversidad de Zaragoza
000095778 7102_ $$12012$$2755$$aUniversidad de Zaragoza$$bDpto. Química Física$$cÁrea Química Física
000095778 773__ $$g10, 17 (2020), 6064 [42 pp]$$pAppl. sci.$$tAPPLIED SCIENCES-BASEL$$x2076-3417
000095778 8564_ $$s920191$$uhttps://zaguan.unizar.es/record/95778/files/texto_completo.pdf$$yVersión publicada
000095778 8564_ $$s519435$$uhttps://zaguan.unizar.es/record/95778/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000095778 909CO $$ooai:zaguan.unizar.es:95778$$particulos$$pdriver
000095778 951__ $$a2021-09-02-09:28:35
000095778 980__ $$aARTICLE