Fuel Type Classification Using Airborne Laser Scanning and Sentinel 2 Data in Mediterranean Forest Affected by Wildfires

Domingo, Dario ; de la Riva, Juan (Universidad de Zaragoza) ; Lamelas, Teresa (Universidad de Zaragoza) ; García-Martín, Alberto (Universidad de Zaragoza) ; Ibarra , Paloma (Universidad de Zaragoza) ; Echeverría, Mª Teresa (Universidad de Zaragoza) ; Hoffrén, Raúl (Universidad de Zaragoza)
Fuel Type Classification Using Airborne Laser Scanning and Sentinel 2 Data in Mediterranean Forest Affected by Wildfires
Resumen: Mediterranean forests are recurrently affected by fire. The recurrence of fire in such environments and the number and severity of previous fire events are directly related to fire risk. Fuel type classification is crucial for estimating ignition and fire propagation for sustainable forest management of these wildfire prone environments. The aim of this study is to classify fuel types according to Prometheus classification using low-density Airborne Laser Scanner (ALS) data, Sentinel 2 data, and 136 field plots used as ground-truth. The study encompassed three different Mediterranean forests dominated by pines (Pinus halepensis, P. pinaster y P. nigra), oaks (Quercus ilex) and quercus (Q. faginea) in areas affected by wildfires in 1994 and their surroundings. Two metric selection approaches and two non-parametric classification methods with variants were compared to classify fuel types. The best-fitted classification model was obtained using Support Vector Machine method with radial kernel. The model includes three ALS and one Sentinel-2 metrics: the 25th percentile of returns height, the percentage of all returns above mean, rumple structural diversity index and NDVI. The overall accuracy of the model after validation was 59%. The combination of data from active and passive remote sensing sensors as well as the use of adapted structural diversity indices derived from ALS data improved accuracy classification. This approach demonstrates its value for mapping fuel type spatial patterns at a regional scale under different heterogeneous and topographically complex Mediterranean forests.
Idioma: Inglés
DOI: 10.3390/rs12213660
Año: 2020
Publicado en: Remote Sensing 12, 21 (2020), 3660 [22 pp.]
ISSN: 2072-4292

Factor impacto JCR: 4.848 (2020)
Categ. JCR: GEOSCIENCES, MULTIDISCIPLINARY rank: 27 / 198 = 0.136 (2020) - Q1 - T1
Categ. JCR: IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY rank: 8 / 29 = 0.276 (2020) - Q2 - T1
Categ. JCR: REMOTE SENSING rank: 10 / 32 = 0.312 (2020) - Q2 - T1
Categ. JCR: ENVIRONMENTAL SCIENCES rank: 76 / 273 = 0.278 (2020) - Q2 - T1

Factor impacto SCIMAGO: 1.284 - Earth and Planetary Sciences (miscellaneous) (Q1)

Financiación: info:eu-repo/grantAgreement/ES/MINECO-FEDER/CGL2014-57013-C2-2-R
Tipo y forma: Article (Published version)
Área (Departamento): Área Geografía Física (Dpto. Geograf. Ordenac.Territ.)
Área (Departamento): Área Análisis Geográfico Regi. (Dpto. Geograf. Ordenac.Territ.)

Exportado de SIDERAL (2021-09-02-10:37:20)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos



 Notice créée le 2020-11-16, modifiée le 2021-09-02


Versión publicada:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)