Diagnosis of failures in solar plants based on performance monitoring
Resumen: Photovoltaic (PV) solar energy has become a reference in electrical generation. The plants currently installed, and those planned have a huge capacity and occupy large areas. The increase in size of the plants presents new challenges in operation and maintenance areas, such as the optimization of the number of sensors installed, large data management and the reduction of the timework in maintenance. The aim of this paper is to show a methodology, to diagnose failures, based on the measured data in the plant. The methodology used is supervised regression machine learning and comparison algorithms. This methodology allows the study of the sensors, the inverters, the joint boxes and the power reduction caused by soiling. The result would allow the detection of around 1-5% of production loss in the plant. The algorithms have been tested with real data of PV plants, and have detected common failures such as production drops in strings and losses due to soiling.
Idioma: Inglés
DOI: 10.24084/repqj18.248
Año: 2020
Publicado en: Renewable Energy and Power Quality Journal 18 (2020), 128-133
ISSN: 2172-038X

Factor impacto SCIMAGO: 0.136 - Electrical and Electronic Engineering (Q4) - Renewable Energy, Sustainability and the Environment (Q4) - Energy Engineering and Power Technology (Q4)

Tipo y forma: Article (Published version)
Área (Departamento): Área Ingeniería Eléctrica (Dpto. Ingeniería Eléctrica)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2021-09-02-10:35:53)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Ingeniería Eléctrica



 Record created 2020-11-17, last modified 2021-09-02


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)