Vanadyl spin qubit 2D arrays and their integration on superconducting resonators

Urtizberea, Ainhoa (Universidad de Zaragoza) ; Natividad, Eva (Universidad de Zaragoza) ; Alonso, Pablo J. ; Pérez-Martínez, Laura ; Andrés, Miguel A. (Universidad de Zaragoza) ; Gascón, Ignacio (Universidad de Zaragoza) ; Gimeno, Ignacio ; Luis, Fernando (Universidad de Zaragoza) ; Roubeau, Olivier (Universidad de Zaragoza)
Vanadyl spin qubit 2D arrays and their integration on superconducting resonators
Resumen: Vanadyl systems have been shown to possess superior quantum coherence among molecular spin qubits. Meanwhile two-dimensional (2D) networks of spin qubit nodes could provide a means to achieve the control of qubit localization and orientation required for implementation of molecular spin qubits in hybrid solid-state devices. Here, the 2D metal-organic framework [{VO(TCPP)}Zn2(H2O)2]8 is reported and its vanadyl porphyrin node is shown to exhibit superior spin dynamics and to enable coherent spin manipulations, making it a valid spin qubit candidate. Nanodomains of the MOF 2D coordination planes are efficiently formed at the air-water interface, first under Langmuir-Schaefer conditions, allowing mono- and multiple layer deposits to be transferred to a variety of substrates. Similar nanodomains are then successfully formed in situ on the surface of Nb superconducting coplanar resonators. Transmission measurements with a resonator with a 14 µm-wide constriction allow to estimate that the single spin-photon coupling G1 of the vanadyl spins in the nanodomains is close to being optimal, at ca. 0.5 Hz. Altogether, these results provide the basis for developing a viable hybrid quantum computing architecture.
Idioma: Inglés
DOI: 10.1039/c9mh01594a
Año: 2020
Publicado en: Materials Horizons 7, 3 (2020), 885-897
ISSN: 2051-6347

Factor impacto JCR: 13.266 (2020)
Categ. JCR: CHEMISTRY, MULTIDISCIPLINARY rank: 19 / 178 = 0.107 (2020) - Q1 - T1
Categ. JCR: MATERIALS SCIENCE, MULTIDISCIPLINARY rank: 26 / 333 = 0.078 (2020) - Q1 - T1

Factor impacto SCIMAGO: 4.322 - Electrical and Electronic Engineering (Q1) - Process Chemistry and Technology (Q1) - Mechanics of Materials (Q1) - Materials Science (miscellaneous) (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E09-17R
Financiación: info:eu-repo/grantAgreement/ES/DGA/E31-17R
Financiación: info:eu-repo/grantAgreement/ES/MEC/FPU14-05367
Financiación: info:eu-repo/grantAgreement/ES/MICINN/RTI2018-096075-B-C21
Financiación: info:eu-repo/grantAgreement/ES/MINECO/CTQ2015-64486-R
Financiación: info:eu-repo/grantAgreement/ES/MINECO-FEDER/MAT2017-86826-R
Financiación: info:eu-repo/grantAgreement/ES/MINECO/MAT2016-78257-R
Financiación: info:eu-repo/grantAgreement/ES/MINECO/PCI2018-093116
Tipo y forma: Artículo (PostPrint)
Área (Departamento): Área Química Física (Dpto. Química Física)
Área (Departamento): Área Cienc.Mater. Ingen.Metal. (Dpto. Ciencia Tecnol.Mater.Fl.)
Área (Departamento): Área Física Materia Condensada (Dpto. Física Materia Condensa.)


Derechos Reservados Derechos reservados por el editor de la revista


Exportado de SIDERAL (2021-09-02-08:50:40)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2020-12-14, última modificación el 2021-09-02


Postprint:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)