000099127 001__ 99127
000099127 005__ 20210902121936.0
000099127 0247_ $$2doi$$a10.1073/pnas.2019931117
000099127 0248_ $$2sideral$$a122532
000099127 037__ $$aART-2020-122532
000099127 041__ $$aeng
000099127 100__ $$aHuang, J.G.
000099127 245__ $$aReply to Elmendorf and Ettinger: Photoperiod playsa dominantand irreplaceable role in triggering secondary growth resumption
000099127 260__ $$c2020
000099127 5060_ $$aAccess copy available to the general public$$fUnrestricted
000099127 5203_ $$aIn their Letter, Elmendorf and Ettinger (1) question the dominant role of photoperiod in driving secondary growth resumption (hereafter referred to as xylem formation onset) of the Northern Hemisphere conifers, recently reported by Huang et al. (2). Their opinions are grounded on the following three aspects, including 1) the seasonality of the photoperiod, 2) the dependence of the predictor variables (e.g., photoperiod, forcing, and chilling) on the response variable (the date of onset of xylem formation, day of the year [DOY]), and 3) the limited value of the obtained models for interannual forecasting. We think they bring up an interesting issue that deserves further discussion and clarification.
Photoperiod is acknowledged to regulate spring bud swelling while wood formation starts (3, 4). Although photoperiod seasonality occurs at each site, its influence is marginal in our study given that the analysis involved comparisons among sites across the Northern Hemisphere. Our conclusion that photoperiod plays a dominant role was built upon the combination of several coherent pieces of evidence, rather than “the crux of Huang et al….” as they pointed out. First, we clearly stated that model 2, which modeled DOY as a function of the mean annual temperature of the site (MAT), forcing, chilling, and soil moisture, was considered the best model in terms of parsimony according to minimum Akaike information criterion and Bayesian information criterion, rather than R2 as referred to in their Letter. Second, photoperiod interacted with MAT and can explain 61.7% of the variance of MAT alone (2). Therefore, we concluded that secondary growth resumption was driven primarily by MAT and photoperiod or by their interaction, which is challenging to be disentangled without experimental data, we agree. In terms of biological functioning, they play an ...
000099127 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000099127 590__ $$a11.205$$b2020
000099127 591__ $$aMULTIDISCIPLINARY SCIENCES$$b8 / 73 = 0.11$$c2020$$dQ1$$eT1
000099127 592__ $$a5.011$$b2020
000099127 593__ $$aMultidisciplinary$$c2020$$dQ1
000099127 655_4 $$ainfo:eu-repo/semantics/other$$vinfo:eu-repo/semantics/publishedVersion
000099127 700__ $$aCampelo, F.
000099127 700__ $$aMa, Q.
000099127 700__ $$aZhang, Y.
000099127 700__ $$aBergeron, Y.
000099127 700__ $$aDeslauriers, A.
000099127 700__ $$aFonti, P.
000099127 700__ $$aLiang, E.
000099127 700__ $$aMäkinen, H.
000099127 700__ $$aOberhuber, W.
000099127 700__ $$aRathgeber, C.B.K.
000099127 700__ $$aTognetti, R.
000099127 700__ $$aTreml, V.
000099127 700__ $$aYang, B.
000099127 700__ $$aZhai, L.
000099127 700__ $$aZhang, J.L.
000099127 700__ $$aAntonucci, S.
000099127 700__ $$aCamarero, J.J.
000099127 700__ $$aCufar, K.
000099127 700__ $$aCuny, H.E.
000099127 700__ $$0(orcid)0000-0002-7585-3636$$ade Luis, M.$$uUniversidad de Zaragoza
000099127 700__ $$aGiovannelli, A.
000099127 700__ $$aGricar, J.
000099127 700__ $$aGruber, A.
000099127 700__ $$aGryc, V.
000099127 700__ $$aGüney, A.
000099127 700__ $$aGuo, X.
000099127 700__ $$aHuang, W.
000099127 700__ $$aJyske, T.
000099127 700__ $$aKašpar, J.
000099127 700__ $$aKing, G.
000099127 700__ $$aKrause, C.
000099127 700__ $$aLemay, A.
000099127 700__ $$aLiu, F.
000099127 700__ $$aLombardi, F.
000099127 700__ $$0(orcid)0000-0003-1542-2698$$aMartínez del Castillo, E.
000099127 700__ $$aMorin, H.
000099127 700__ $$aNabais, C.
000099127 700__ $$aNöjd, P.
000099127 700__ $$aPeters, R.L.
000099127 700__ $$aPrislan, P.
000099127 700__ $$aSaracino, A.
000099127 700__ $$aSwidrak, I.
000099127 700__ $$aVavrcík, H.
000099127 700__ $$aVieira, J.
000099127 700__ $$aYu, B.
000099127 700__ $$aZhang, S.
000099127 700__ $$aZeng, Q.
000099127 700__ $$aZiaco, E.
000099127 700__ $$aRossi, S.
000099127 7102_ $$13006$$2430$$aUniversidad de Zaragoza$$bDpto. Geograf. Ordenac.Territ.$$cÁrea Geografía Física
000099127 773__ $$g117, 52 (2020), 32865-32867$$pProc. Natl. Acad. Sci.$$tProceedings of the National Academy of Sciences$$x0027-8424
000099127 8564_ $$s615879$$uhttps://zaguan.unizar.es/record/99127/files/texto_completo.pdf$$yVersión publicada
000099127 8564_ $$s3016508$$uhttps://zaguan.unizar.es/record/99127/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000099127 909CO $$ooai:zaguan.unizar.es:99127$$particulos$$pdriver
000099127 951__ $$a2021-09-02-10:58:06
000099127 980__ $$aARTICLE