Existence and reduction of generalized apostol-bernoulli, apostol-euler and apostol-genocchi polynomials
Resumen: One can find in the mathematical literature many recent papers studying the generalized Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials, defined by means of generating functions. In this article we clarify the range of parameters in which these definitions are valid and when they provide essentially different families of polynomials. In particular, we show that, up to multiplicative constants, it is enough to take as the “main family” those given by \[ \Big ( \frac{2}{\lambda e^t+1} \Big )^\alpha e^{xt} = \sum _{n=0}^{\infty } \mathcal{E}^{(\alpha )}_{n}(x;\lambda ) \frac{t^n}{n!}\,, \qquad \lambda \in \mathbb{C}\setminus \lbrace -1\rbrace \,, \] and as an “exceptional family” \[ \Big ( \frac{t}{e^t-1} \Big )^\alpha e^{xt} = \sum _{n=0}^{\infty } \mathcal{B}^{(\alpha )}_{n}(x) \frac{t^n}{n!}\,, \] both of these for $\alpha \in \mathbb{C}$.
Idioma: Inglés
DOI: 10.5817/AM2019-3-157
Año: 2019
Publicado en: Archivum Mathematicum 55, 3 (2019), 157-165
ISSN: 0044-8753

Factor impacto SCIMAGO: 0.237 - Mathematics (miscellaneous) (Q3)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E64
Financiación: info:eu-repo/grantAgreement/ES/MINECO/MTM2015-65888-C4-4-P
Tipo y forma: Article (Published version)
Área (Departamento): Área Análisis Matemático (Dpto. Matemáticas)
Exportado de SIDERAL (2023-09-21-13:31:28)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > analisis_matematico



 Notice créée le 2021-02-24, modifiée le 2023-09-21


Versión publicada:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)