Abstract: The study of molecular electronics is a growing field which aims to merge with classic inorganic based technology. Important sources such as the National Institute of Standards and Technology (NIST) and the International Roadmap for Semiconductors (ITRS) have already mentioned the importance of this upcoming field in future electronics. Understanding and taking advantage of the electronic properties of organic molecules requires the development of a top-contact electrode which can be used to build a functional electronic device. The objective of this research is to understand current trends in molecular electronic top-contact technology and create a top-contact onto monolayers incorporating behenic acid as a test probe and at a later date onto monomolecular films of an oligo(phenyl ethylenes) derivative. Mayor interest is aimed toward the use of oligo(phenyl ethylene)s (OPEs) type molecules as molecular wires. In particular this project 1,4-bis-(4-phenylethynyl)-benzene-4’-4’-bis( carboxylic acid) will be studied. The “delocalized” π-bonds of this molecule will make it more suitable for electron transport and the terminal acid groups will assist in the fabrication of the top-contact for electron transport and the terminal acid groups will assist in the fabrication of the top contact electrode. Creating a reproducible and cost efficient silver top-contact represents the main challenge of this research project. The molecular monolayers will be built by means of the Langmuir Blodgett technique, which is a sophisticated method for the assembly of organic materials into well ordered films. UV-Vis spectroscopy is used to undoubtedly demonstrate the formation of silver nanoparticles of clusters onto the monomolecular films. These films will also be characterized by SEM and AFM.