Large deviations, moderate deviations, and the KLS conjecture
Resumen: Having its origin in theoretical computer science, the Kannan-Lov\'asz-Simonovits (KLS) conjecture is one of the major open problems in asymptotic convex geometry and high-dimensional probability theory today. In this work, we establish a connection between this conjecture and the study of large and moderate deviations for isotropic log-concave random vectors. We then study the moderate deviations for the Euclidean norm of random orthogonally projected random vectors in an $\ell_p^n$--ball. This leads to a number of interesting observations: (A) the $\ell_1^n$--ball is critical for the new approach; (B) for $p\geq 2$ the rate function in the moderate deviations principle undergoes a phase transition, depending on whether the scaling is below the square-root of the subspace dimensions or comparable; (C) for $1\leq p<2$ and comparable subspace dimensions, the rate function again displays a phase transition depending on its growth relative to n^{p/2}.
Idioma: Inglés
DOI: 10.1016/j.jfa.2020.108779
Año: 2021
Publicado en: JOURNAL OF FUNCTIONAL ANALYSIS 280, 1 (2021), 108779 1-33
ISSN: 0022-1236

Factor impacto JCR: 1.891 (2021)
Categ. JCR: MATHEMATICS rank: 47 / 333 = 0.141 (2021) - Q1 - T1
Factor impacto CITESCORE: 2.7 - Mathematics (Q2)

Factor impacto SCIMAGO: 1.819 - Analysis (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E48-20R
Financiación: info:eu-repo/grantAgreement/ES/MICINN/MTM2016-77710-P
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2019-105979GP-I00
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Análisis Matemático (Dpto. Matemáticas)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2023-05-18-13:23:36)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Análisis Matemático



 Record created 2021-09-30, last modified 2023-05-19


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)