Learning non-Markovian physics from data

González, D. (Universidad de Zaragoza) ; Chinesta, F. ; Cueto, E. (Universidad de Zaragoza)
Learning non-Markovian physics from data
Resumen: We present a method for the data-driven learning of physical phenomena whose evolution in time depends on history terms. It is well known that a Mori-Zwanzig-type projection produces a description of the physical phenomena that depends on history, and also incorporates noise. If the data stream is sampled from the projected Mori-Zwanzig manifold, the description of the phenomenon will always depend on one or more unresolved variables, a priori unknown, and will also incorporate noise. The present work introduces a novel technique able to unveil the presence of such internal variables—although without giving it a precise physical meaning—and to minimize the inherent noise. The method is based upon a refinement of the scale at which the phenomenon is described by means of kernel-PCA techniques. By learning the metriplectic form of the evolution of the physics, the resulting approximation satisfies basic thermodynamic principles such as energy conservation and positive entropy production. Examples are provided that show the potential of the method in both discrete and continuum mechanics.
Idioma: Inglés
DOI: 10.1016/j.jcp.2020.109982
Año: 2021
Publicado en: Journal of Computational Physics 428, 109982 (2021), [14 pp]
ISSN: 0021-9991

Factor impacto JCR: 4.645 (2021)
Categ. JCR: PHYSICS, MATHEMATICAL rank: 3 / 56 = 0.054 (2021) - Q1 - T1
Categ. JCR: COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS rank: 40 / 112 = 0.357 (2021) - Q2 - T2

Factor impacto CITESCORE: 7.1 - Physics and Astronomy (Q1) - Mathematics (Q1) - Computer Science (Q1)

Factor impacto SCIMAGO: 2.069 - Applied Mathematics (Q1) - Computational Mathematics (Q1) - Physics and Astronomy (miscellaneous) (Q1) - Numerical Analysis (Q1) - Modeling and Simulation (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA-FSE/T24-20R
Financiación: info:eu-repo/grantAgreement/ES/MINECO-CICYT/DPI2017-85139-C2-1-R
Financiación: info:eu-repo/grantAgreement/ES/UZ/ESI-ENSAM-Simulated Reality
Tipo y forma: Artículo (PostPrint)
Área (Departamento): Área Mec.Med.Cont. y Teor.Est. (Dpto. Ingeniería Mecánica)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.


Exportado de SIDERAL (2023-05-18-13:25:53)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2021-11-15, última modificación el 2023-05-19


Postprint:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)