Iterated Function Systems composed of generalized theta-contractions
Resumen: The theory of iterated function systems (IFSs) has been an active area of research on fractals and various types of self-similarity in nature. The basic theoretical work on IFSs has been proposed by Hutchinson. In this paper, we introduce a new generalization of Hutchinson IFS, namely generalized θ-contraction IFS, which is a finite collection of generalized θ-contraction functions T1, . . . , TN from finite Cartesian product space X × · · · × X into X, where (X, d) is a complete metric space. We prove the existence of attractor for this generalized IFS. We show that the Hutchinson operators for countable and multivalued θ-contraction IFSs are Picard. Finally, when the map θ is continuous, we show the relation between the code space and the attractor of θ-contraction IFS.
Idioma: Inglés
DOI: 10.3390/fractalfract5030069
Año: 2021
Publicado en: Fractal and fractional 5 (2021), 5030069 [14 pp.]
ISSN: 2504-3110

Factor impacto JCR: 3.577 (2021)
Categ. JCR: MATHEMATICS, INTERDISCIPLINARY APPLICATIONS rank: 18 / 108 = 0.167 (2021) - Q1 - T1
Factor impacto CITESCORE: 2.8 - Mathematics (Q2) - Physics and Astronomy (Q3)

Factor impacto SCIMAGO: 0.644 - Statistical and Nonlinear Physics (Q2) - Analysis (Q2)

Tipo y forma: Article (Published version)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2023-05-18-14:18:44)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Matemática Aplicada



 Record created 2021-11-23, last modified 2023-05-19


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)