Best approximation of functions by log-polynomials
Resumen: Lasserre [La] proved that for every compact set K _ Rn and every even number d there exists a unique homogeneous polynomial g0 of degree d with K _ G1(g0) = fx 2 Rn : g0(x) _ 1g minimizing jG1(g)j among all such polynomials g fulfilling the condition K _ G1(g). This result extends the notion of the Löwner ellipsoid, not only from convex bodies to arbitrary compact sets (which was immediate if d = 2 by taking convex hulls), but also from ellipsoids to level sets of homogeneous polynomial of an arbitrary even degree. In this paper we extend this result for the class of non-negative log-concave functions in two different ways. One of them is the straightforward extension of the known results, and the other one is a suitable extension with uniqueness of the solution in the corresponding problem and a characterization in terms of some ’contact points’.
Idioma: Inglés
DOI: 10.1016/j.jfa.2021.109344
Año: 2022
Publicado en: JOURNAL OF FUNCTIONAL ANALYSIS 282, 5 (2022), 109344
ISSN: 0022-1236

Factor impacto JCR: 1.7 (2022)
Categ. JCR: MATHEMATICS rank: 51 / 329 = 0.155 (2022) - Q1 - T1
Factor impacto CITESCORE: 2.9 - Mathematics (Q2)

Factor impacto SCIMAGO: 1.959 - Analysis (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E48-20R
Financiación: info:eu-repo/grantAgreement/ES/MICINN PID2019-105979GB-I00
Tipo y forma: Article (Published version)
Área (Departamento): Área Análisis Matemático (Dpto. Matemáticas)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2024-03-18-12:38:31)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Análisis Matemático



 Record created 2022-01-11, last modified 2024-03-19


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)