Development and validation of a computational model for steak double-sided pan cooking

Moya, J. (Universidad de Zaragoza) ; Lorente-Bailo, S. (Universidad de Zaragoza) ; Salvador, M.L. (Universidad de Zaragoza) ; Ferrer-Mairal, A. (Universidad de Zaragoza) ; Martínez, M.A. (Universidad de Zaragoza) ; Calvo, B. (Universidad de Zaragoza) ; Grasa, J. (Universidad de Zaragoza)
Development and validation of a computational model for steak double-sided pan cooking
Resumen: The objective of this study was to develop and validate a numerical model to adequately simulate the double-sided pan cooking of beef in a domestic environment. The proposed model takes into account the heat flow from the pan to the meat and the moisture transfer, simultaneously with the meat deformation. The model considers the swelling pressure gradient caused by the shrinkage of the meat fibers and connective tissue due to the denaturation of proteins and the loss of the water holding capacity during cooking. The model results were successfully verified with experimental data of the central temperature and weight loss recorded during cooking for three degrees of doneness. The measured experimental temperatures at the center of the meat were 30 ± 3 °C (very rare), 44 ± 3 °C (rare) and 57 ± 2 °C (done) for a 19 mm steak thickness. Meanwhile, their water losses were 4 ± 2 %, 8 ± 1 % and 11 ± 2 %, respectively. The root mean squared errors of the model predictions were 2.16 °C (very rare), 3.56 °C (rare) and 4.57 °C (done) for the central temperature and 1.48 %, 2.08 % and 2.40 %, respectively for the water loss. The model also correctly predicts cooking times for steaks of different thicknesses, taking weight loss as a reference to set this time. The proposed model is postulated as a useful cooking assistance tool to estimate the optimal cooking time according to consumer preferences.
Idioma: Inglés
DOI: 10.1016/j.jfoodeng.2021.110498
Año: 2021
Publicado en: JOURNAL OF FOOD ENGINEERING 298 (2021), 110498 [12 pp]
ISSN: 0260-8774

Factor impacto JCR: 6.203 (2021)
Categ. JCR: FOOD SCIENCE & TECHNOLOGY rank: 26 / 144 = 0.181 (2021) - Q1 - T1
Categ. JCR: ENGINEERING, CHEMICAL rank: 29 / 142 = 0.204 (2021) - Q1 - T1

Factor impacto CITESCORE: 10.5 - Agricultural and Biological Sciences (Q1)

Factor impacto SCIMAGO: 1.115 - Food Science (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA-FSE/T07-20R
Financiación: info:eu-repo/grantAgreement/ES/DGA-FSE/T24-20R
Financiación: info:eu-repo/grantAgreement/ES/MICINN-AEI/RTC-2017-5965-6
Tipo y forma: Artículo (PostPrint)
Área (Departamento): Área Ingeniería Química (Dpto. Ing.Quím.Tecnol.Med.Amb.)
Área (Departamento): Área Mec.Med.Cont. y Teor.Est. (Dpto. Ingeniería Mecánica)
Área (Departamento): Área Tecnología de Alimentos (Dpto. Produc.Animal Cienc.Ali.)


Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.


Exportado de SIDERAL (2023-12-15-08:59:25)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2022-02-23, última modificación el 2023-12-15


Postprint:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)