Estudios
I+D+I
Institución
Internacional
Vida Universitaria
Universidad de Zaragoza Repository
Search
Submit
Personalize
Your alerts
Your baskets
Your searches
Help
EN
/
ES
Home
>
Articles
> Predicting cell behaviour parameters from glioblastoma on a chip images. A deep learning approach
Usage statistics
Plots
Predicting cell behaviour parameters from glioblastoma on a chip images. A deep learning approach
Pérez-Aliacar, M.
(Universidad de Zaragoza)
;
Doweidar, M.H.
(Universidad de Zaragoza)
;
Doblaré, M.
(Universidad de Zaragoza)
;
Ayensa-Jiménez, J.
(Universidad de Zaragoza)
Resumen:
The broad possibilities offered by microfluidic devices in relation to massive data monitoring and acquisition open the door to the use of deep learning technologies in a very promising field: cell culture monitoring. In this work, we develop a methodology for parameter identification in cell culture from fluorescence images using Convolutional Neural Networks (CNN). We apply this methodology to the in vitro study of glioblastoma (GBM), the most common, aggressive and lethal primary brain tumour. In particular, the aim is to predict the three parameters defining the go or grow GBM behaviour, which is determinant for the tumour prognosis and response to treatment. The data used to train the network are obtained from a mathematical model, previously validated with in vitro experimental results. The resulting CNN provides remarkably accurate predictions (Pearson''s ¿ > 0.99 for all the parameters). Besides, it proves to be sound, to filter noise and to generalise. After training and validation with synthetic data, we predict the parameters corresponding to a real image of a microfluidic experiment. The obtained results show good performance of the CNN. The proposed technique may set the first steps towards patient-specific tools, able to predict in real-time the tumour evolution for each particular patient, thanks to a combined in vitro-in silico approach. © 2021 The Author(s)
Idioma:
Inglés
DOI:
10.1016/j.compbiomed.2021.104547
Año:
2021
Publicado en:
Computers in biology and medicine
135 (2021), 104547 [11 pp.]
ISSN:
0010-4825
Factor impacto JCR:
6.698 (2021)
Categ. JCR:
BIOLOGY
rank: 13 / 94 = 0.138
(2021)
- Q1
- T1
Categ. JCR:
MATHEMATICAL & COMPUTATIONAL BIOLOGY
rank: 6 / 57 = 0.105
(2021)
- Q1
- T1
Categ. JCR:
ENGINEERING, BIOMEDICAL
rank: 22 / 98 = 0.224
(2021)
- Q1
- T1
Categ. JCR:
COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
rank: 24 / 112 = 0.214
(2021)
- Q1
- T1
Factor impacto CITESCORE:
8.2 -
Medicine
(Q1) -
Computer Science
(Q1)
Factor impacto SCIMAGO:
1.309 -
Health Informatics
(Q1) -
Computer Science Applications
(Q1)
Financiación:
info:eu-repo/grantAgreement/ES/MICINN/PGC2018-097257-B-C31
Financiación:
info:eu-repo/grantAgreement/ES/MICINN/PID2019-106099RB-C44
Tipo y forma:
Article (Published version)
Área (Departamento):
Área Mec.Med.Cont. y Teor.Est.
(
Dpto. Ingeniería Mecánica
)
You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.
Exportado de SIDERAL (2024-02-19-13:52:25)
Permalink:
Copy
Visitas y descargas
Este artículo se encuentra en las siguientes colecciones:
Articles
Back to search
Record created 2022-04-05, last modified 2024-02-19
Versión publicada:
PDF
Rate this document:
Rate this document:
1
2
3
4
5
(Not yet reviewed)
Add to personal basket
Export as
BibTeX
,
MARC
,
MARCXML
,
DC
,
EndNote
,
NLM
,
RefWorks