Estudios
I+D+I
Institución
Internacional
Vida Universitaria
Atlantis Institut des Sciences Fictives
Recherche
Soumettre
Personnaliser
Vos alertes
Vos paniers
Vos recherches
Aide
EN
/
ES
Accueil
>
articulos
> Predicting cell behaviour parameters from glioblastoma on a chip images. A deep learning approach
Statistiques d'utilisation
Graphiques
Predicting cell behaviour parameters from glioblastoma on a chip images. A deep learning approach
Pérez-Aliacar, M.
(Universidad de Zaragoza)
;
Doweidar, M.H.
(Universidad de Zaragoza)
;
Doblaré, M.
(Universidad de Zaragoza)
;
Ayensa-Jiménez, J.
(Universidad de Zaragoza)
Resumen:
The broad possibilities offered by microfluidic devices in relation to massive data monitoring and acquisition open the door to the use of deep learning technologies in a very promising field: cell culture monitoring. In this work, we develop a methodology for parameter identification in cell culture from fluorescence images using Convolutional Neural Networks (CNN). We apply this methodology to the in vitro study of glioblastoma (GBM), the most common, aggressive and lethal primary brain tumour. In particular, the aim is to predict the three parameters defining the go or grow GBM behaviour, which is determinant for the tumour prognosis and response to treatment. The data used to train the network are obtained from a mathematical model, previously validated with in vitro experimental results. The resulting CNN provides remarkably accurate predictions (Pearson''s ¿ > 0.99 for all the parameters). Besides, it proves to be sound, to filter noise and to generalise. After training and validation with synthetic data, we predict the parameters corresponding to a real image of a microfluidic experiment. The obtained results show good performance of the CNN. The proposed technique may set the first steps towards patient-specific tools, able to predict in real-time the tumour evolution for each particular patient, thanks to a combined in vitro-in silico approach. © 2021 The Author(s)
Idioma:
Inglés
DOI:
10.1016/j.compbiomed.2021.104547
Año:
2021
Publicado en:
Computers in biology and medicine
135 (2021), 104547 [11 pp.]
ISSN:
0010-4825
Factor impacto JCR:
6.698 (2021)
Categ. JCR:
BIOLOGY
rank: 13 / 94 = 0.138
(2021)
- Q1
- T1
Categ. JCR:
MATHEMATICAL & COMPUTATIONAL BIOLOGY
rank: 6 / 57 = 0.105
(2021)
- Q1
- T1
Categ. JCR:
ENGINEERING, BIOMEDICAL
rank: 22 / 98 = 0.224
(2021)
- Q1
- T1
Categ. JCR:
COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
rank: 24 / 112 = 0.214
(2021)
- Q1
- T1
Factor impacto CITESCORE:
8.2 -
Medicine
(Q1) -
Computer Science
(Q1)
Factor impacto SCIMAGO:
1.309 -
Health Informatics
(Q1) -
Computer Science Applications
(Q1)
Financiación:
info:eu-repo/grantAgreement/ES/MICINN/PGC2018-097257-B-C31
Financiación:
info:eu-repo/grantAgreement/ES/MICINN/PID2019-106099RB-C44
Tipo y forma:
Article (Published version)
Área (Departamento):
Área Mec.Med.Cont. y Teor.Est.
(
Dpto. Ingeniería Mecánica
)
Exportado de SIDERAL (2024-02-19-13:52:25)
Permalink:
Copy
Visitas y descargas
Este artículo se encuentra en las siguientes colecciones:
articulos
Retour à la recherche
Notice créée le 2022-04-05, modifiée le 2024-02-19
Versión publicada:
PDF
Évaluer ce document:
Rate this document:
1
2
3
4
5
(Pas encore évalué)
Ajouter au panier personnel
Exporter vers
BibTeX
,
MARC
,
MARCXML
,
DC
,
EndNote
,
NLM
,
RefWorks