On the Sigma-invariants of even Artin groups of FC-type
Resumen: In this paper we study Sigma-invariants of even Artin groups of FC-type, extending some known results for right-angled Artin groups. In particular, we define a condition that we call the strong n-link condition for a graph Gamma and prove that it gives a sufficient condition for a character chi : A(Gamma) -> Z to satisfy chi] is an element of Sigma(n)(A(Gamma), Z). This implies that the kernel A(Gamma)(chi) = ker chi is of type FPn. We prove the homotopical version of this result as well and discuss partial results on the converse. We also provide a general formula for the free part of H-n(A(Gamma)(chi); F) as an Ft(+/- 1)]-module with the natural action induced by chi. This gives a characterization of when H-n(A(Gamma)(chi); F) is a finite dimensional vector space over F.
Idioma: Inglés
DOI: 10.1016/j.jpaa.2021.106984
Año: 2022
Publicado en: JOURNAL OF PURE AND APPLIED ALGEBRA 226, 7 (2022), 106984 [7 pp]
ISSN: 0022-4049

Factor impacto JCR: 0.8 (2022)
Categ. JCR: MATHEMATICS rank: 170 / 329 = 0.517 (2022) - Q3 - T2
Categ. JCR: MATHEMATICS, APPLIED rank: 210 / 267 = 0.787 (2022) - Q4 - T3

Factor impacto CITESCORE: 1.6 - Mathematics (Q3)

Factor impacto SCIMAGO: 0.887 - Algebra and Number Theory (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E22-20R
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PGC2018-101179-B
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2020-114750GB-C31/AEI/10.13039/501100011033
Tipo y forma: Article (Published version)
Área (Departamento): Área Geometría y Topología (Dpto. Matemáticas)
Área (Departamento): Área Algebra (Dpto. Matemáticas)


Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2024-03-18-13:17:43)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2022-04-05, last modified 2024-03-19


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)