Resumen: In this paper we prove that if G is a group for which there are k non-Frattini chief factors isomorphic to a characteristically simple group A, then G has a normal section C/R that is the direct product of k minimal normal subgroups of G/R isomorphic to A. This is a significant extension of the notion of crown for isomorphic chief factors. Idioma: Inglés DOI: 10.1007/s13398-021-01188-z Año: 2022 Publicado en: Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas 116, 1 (2022), [7 pp.] ISSN: 1578-7303 Factor impacto JCR: 2.9 (2022) Categ. JCR: MATHEMATICS rank: 15 / 329 = 0.046 (2022) - Q1 - T1 Factor impacto CITESCORE: 4.9 - Mathematics (Q1)