Large characteristically simple sections of finite groups
Resumen: In this paper we prove that if G is a group for which there are k non-Frattini chief factors isomorphic to a characteristically simple group A, then G has a normal section C/R that is the direct product of k minimal normal subgroups of G/R isomorphic to A. This is a significant extension of the notion of crown for isomorphic chief factors.
Idioma: Inglés
DOI: 10.1007/s13398-021-01188-z
Año: 2022
Publicado en: Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas 116, 1 (2022), [7 pp.]
ISSN: 1578-7303

Factor impacto JCR: 2.9 (2022)
Categ. JCR: MATHEMATICS rank: 15 / 329 = 0.046 (2022) - Q1 - T1
Factor impacto CITESCORE: 4.9 - Mathematics (Q1)

Factor impacto SCIMAGO: 0.933 - Algebra and Number Theory (Q1) - Analysis (Q1) - Geometry and Topology (Q1) - Computational Mathematics (Q1) - Applied Mathematics (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E22-20R
Financiación: info:eu-repo/grantAgreement/ES/MCIU-AEI/PGC2018-095140-B-I00
Tipo y forma: Article (Published version)
Área (Departamento): Área Algebra (Dpto. Matemáticas)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2024-03-18-12:55:44)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2022-05-27, last modified 2024-03-19


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)