Estudios
I+D+I
Institución
Internacional
Vida Universitaria
Repositorio Institucional de Documentos
Buscar
Enviar
Personalizar
Sus alertas
Sus carpetas
Sus búsquedas
Ayuda
EN
/
ES
Página principal
>
Artículos
> Advances in the application of machine learning techniques for power system analytics: A survey†
Estadísticas de uso
Gráficos
Advances in the application of machine learning techniques for power system analytics: A survey†
Miraftabzadeh S.M.
;
Longo M.
;
Foiadelli F.
;
Pasetti M.
;
Igual R.
(Universidad de Zaragoza)
Resumen:
The recent advances in computing technologies and the increasing availability of large amounts of data in smart grids and smart cities are generating new research opportunities in the application of Machine Learning (ML) for improving the observability and efficiency of modern power grids. However, as the number and diversity of ML techniques increase, questions arise about their performance and applicability, and on the most suitable ML method depending on the specific application. Trying to answer these questions, this manuscript presents a systematic review of the state-of-the-art studies implementing ML techniques in the context of power systems, with a specific focus on the analysis of power flows, power quality, photovoltaic systems, intelligent transportation, and load forecasting. The survey investigates, for each of the selected topics, the most recent and promising ML techniques proposed by the literature, by highlighting their main characteristics and relevant results. The review revealed that, when compared to traditional approaches, ML algorithms can handle massive quantities of data with high dimensionality, by allowing the identification of hidden characteristics of (even) complex systems. In particular, even though very different techniques can be used for each application, hybrid models generally show better performances when compared to single ML-based models. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Idioma:
Inglés
DOI:
10.3390/en14164776
Año:
2021
Publicado en:
Energies
14, 16 (2021), 4776 [24 pp]
ISSN:
1996-1073
Factor impacto JCR:
3.252 (2021)
Categ. JCR:
ENERGY & FUELS
rank: 80 / 119 = 0.672
(2021)
- Q3
- T3
Factor impacto CITESCORE:
5.0 -
Engineering
(Q1) -
Mathematics
(Q1) -
Energy
(Q2)
Factor impacto SCIMAGO:
0.653 -
Energy (miscellaneous)
(Q1) -
Energy Engineering and Power Technology
(Q1) -
Fuel Technology
(Q1) -
Control and Optimization
(Q1) -
Engineering (miscellaneous)
(Q1)
Tipo y forma:
Artículo (Versión definitiva)
Área (Departamento):
Área Ingeniería Eléctrica
(
Dpto. Ingeniería Eléctrica
)
Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
Exportado de SIDERAL (2023-05-18-15:43:40)
Enlace permanente:
Copiar
Visitas y descargas
Este artículo se encuentra en las siguientes colecciones:
Artículos
Volver a la búsqueda
Registro creado el 2022-07-05, última modificación el 2023-05-19
Versión publicada:
PDF
Valore este documento:
Rate this document:
1
2
3
4
5
(Sin ninguna reseña)
Añadir a una carpeta personal
Exportar como
BibTeX
,
MARC
,
MARCXML
,
DC
,
EndNote
,
NLM
,
RefWorks