Advances in the application of machine learning techniques for power system analytics: A survey†
Resumen: The recent advances in computing technologies and the increasing availability of large amounts of data in smart grids and smart cities are generating new research opportunities in the application of Machine Learning (ML) for improving the observability and efficiency of modern power grids. However, as the number and diversity of ML techniques increase, questions arise about their performance and applicability, and on the most suitable ML method depending on the specific application. Trying to answer these questions, this manuscript presents a systematic review of the state-of-the-art studies implementing ML techniques in the context of power systems, with a specific focus on the analysis of power flows, power quality, photovoltaic systems, intelligent transportation, and load forecasting. The survey investigates, for each of the selected topics, the most recent and promising ML techniques proposed by the literature, by highlighting their main characteristics and relevant results. The review revealed that, when compared to traditional approaches, ML algorithms can handle massive quantities of data with high dimensionality, by allowing the identification of hidden characteristics of (even) complex systems. In particular, even though very different techniques can be used for each application, hybrid models generally show better performances when compared to single ML-based models. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Idioma: Inglés
DOI: 10.3390/en14164776
Año: 2021
Publicado en: Energies 14, 16 (2021), 4776 [24 pp]
ISSN: 1996-1073

Factor impacto JCR: 3.252 (2021)
Categ. JCR: ENERGY & FUELS rank: 80 / 119 = 0.672 (2021) - Q3 - T3
Factor impacto CITESCORE: 5.0 - Engineering (Q1) - Mathematics (Q1) - Energy (Q2)

Factor impacto SCIMAGO: 0.653 - Energy (miscellaneous) (Q1) - Energy Engineering and Power Technology (Q1) - Fuel Technology (Q1) - Control and Optimization (Q1) - Engineering (miscellaneous) (Q1)

Tipo y forma: Article (Published version)
Área (Departamento): Área Ingeniería Eléctrica (Dpto. Ingeniería Eléctrica)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2023-05-18-15:43:40)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Ingeniería Eléctrica



 Record created 2022-07-05, last modified 2023-05-19


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)