New equilibria of non-autonomous discrete dynamical systems
Resumen: In the framework of non-autonomous discrete dynamical systems in metric spaces, we propose new equilibrium points, called quasi-fixed points, and prove that they play a role similar to that of fixed points in autonomous discrete dynamical systems. In this way some sufficient conditions for the convergence of iterative schemes of type [fórmula] in metric spaces are presented, where the maps [fórmula] are contractivities with different fixed points. The results include any reordering of the maps, even with repetitions, and forward and backward directions. We also prove generalizations of the Banach fixed point theorems when the self-map is substituted by a sequence of contractivities with different fixed points. The theory presented links the field of dynamical systems with the theory of iterated function systems. We prove that in some cases the set of quasi-fixed points is an invariant fractal set. The hypotheses relax the usual conditions on the underlying space for the existence of invariant sets in countable iterated function systems.
Idioma: Inglés
DOI: 10.1016/j.chaos.2021.111413
Año: 2021
Publicado en: Chaos, Solitons and Fractals 152 (2021), 111413 [8 pp.]
ISSN: 0960-0779

Factor impacto JCR: 9.922 (2021)
Categ. JCR: MATHEMATICS, INTERDISCIPLINARY APPLICATIONS rank: 1 / 108 = 0.009 (2021) - Q1 - T1
Categ. JCR: PHYSICS, MULTIDISCIPLINARY rank: 7 / 86 = 0.081 (2021) - Q1 - T1
Categ. JCR: PHYSICS, MATHEMATICAL rank: 1 / 56 = 0.018 (2021) - Q1 - T1

Factor impacto CITESCORE: 9.9 - Mathematics (Q1) - Physics and Astronomy (Q1)

Factor impacto SCIMAGO: 1.647 - Applied Mathematics (Q1) - Statistical and Nonlinear Physics (Q1) - Mathematics (miscellaneous) (Q1)

Tipo y forma: Article (PostPrint)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2023-05-18-14:17:58)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Matemática Aplicada



 Record created 2022-09-21, last modified 2023-05-19


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)