Concerning the Vector-Valued Fractal Interpolation Functions on the Sierpinski Gasket
Resumen: The present paper is concerned with the study of vector-valued interpolation functions on the Sierpinski gasket by certain classes of fractal functions. This extends the known results on the real-valued and vector-valued fractal interpolation functions on a compact interval in R and the real-valued fractal interpolation on the Sierpinski gasket. We study the smoothness property of the vector-valued fractal interpolants on the Sierpinski gasket. A few elementary properties of the fractal approximants and the fractal operator that emerge in connection with the vector-valued fractal interpolation on the Sierpinski gasket are indicated. Some constrained approximation aspects of the vector-valued fractal interpolation function on the Sierpinski gasket are pointed out. © 2021, The Author(s), under exclusive licence to Springer Nature Switzerland AG.
Idioma: Inglés
DOI: 10.1007/s00009-021-01847-w
Año: 2021
Publicado en: Mediterranean Journal of Mathematics 18, 5 (2021), 202
ISSN: 1660-5446

Factor impacto JCR: 1.305 (2021)
Categ. JCR: MATHEMATICS rank: 96 / 333 = 0.288 (2021) - Q2 - T1
Categ. JCR: MATHEMATICS, APPLIED rank: 146 / 267 = 0.547 (2021) - Q3 - T2

Factor impacto CITESCORE: 2.0 - Mathematics (Q2)

Factor impacto SCIMAGO: 0.593 - Mathematics (miscellaneous) (Q2)

Tipo y forma: Article (PostPrint)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)
Exportado de SIDERAL (2023-05-18-14:36:35)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > matematica_aplicada



 Notice créée le 2022-09-30, modifiée le 2023-05-19


Postprint:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)