Resumen: The object of this work is to study the relation between composition, microstructure and oxidation state of Pr2±xZr2∓xO7±y materials produced by the laser–floating zone (LFZ) technique. Three compositions are studied, nominally Pr1.7Zr2.3O7+y, Pr2Zr2O7+y and Pr2.24Zr1.76O7±y, all within the pyrochlore field in the ZrO2–PrOx phase diagram. Samples have been processed under four different atmospheres (O2, air, N2 and 5%H2(Ar)), so as to vary the environmental conditions from oxidising to reducing. Sample colouration ranged from dark brown to bright green, owing to varying Pr4+ content. A close correlation is found between the phase homogeneity, the microstructure and the Pr content. Pr–deficient samples present a homogeneous microstructural aspect and composition, whereas Pr–rich compositions always break into 5–25 µm–sized grains with pyrochlore phases at the grain centre and ill–crystallised, Pr–rich oxidised phases at the grain–boundaries. Raman spectroscopy shows that different types of oxygen disorder occur depending on composition and processing atmosphere: in Pr–poor samples oxygen interstitials are created to compensate for Zr4+ excess charge, whereas in Pr–rich samples oxygen disorder occurs around the Pr3+ or Pr4+ ions substituting for Zr4+, because of size–mismatch. Magnetic measurements showed a high Pr4+ content, which has been attributed to several factors: the highly oxidised state of the feedstock material, the segregation of Pr and O–rich grain boundaries in compositions with praseodymium molar rate> 0.5, and the lower oxide–ion conductivity for PZO compositions, compared to either Pr–poor or Pr–rich compositions. Post–processing thermal annealing in a vacuum at 1000 °C enabled total Pr reduction, with the exception of the Pr–rich P2.24 samples, where some Pr4+ ions remained in the oxidised state. Idioma: Inglés DOI: 10.1016/j.jallcom.2022.166449 Año: 2022 Publicado en: JOURNAL OF ALLOYS AND COMPOUNDS 923 (2022), 166449 [11 pp.] ISSN: 0925-8388 Factor impacto JCR: 6.2 (2022) Categ. JCR: METALLURGY & METALLURGICAL ENGINEERING rank: 8 / 79 = 0.101 (2022) - Q1 - T1 Categ. JCR: CHEMISTRY, PHYSICAL rank: 45 / 161 = 0.28 (2022) - Q2 - T1 Categ. JCR: MATERIALS SCIENCE, MULTIDISCIPLINARY rank: 91 / 343 = 0.265 (2022) - Q2 - T1 Factor impacto CITESCORE: 10.9 - Materials Science (Q1) - Engineering (Q1)