Pyrochlore-like ZrO2-PrOx compounds: The role of the processing atmosphere in the stoichiometry, microstructure and oxidation state
Resumen: The object of this work is to study the relation between composition, microstructure and oxidation state of Pr2±xZr2∓xO7±y materials produced by the laser–floating zone (LFZ) technique. Three compositions are studied, nominally Pr1.7Zr2.3O7+y, Pr2Zr2O7+y and Pr2.24Zr1.76O7±y, all within the pyrochlore field in the ZrO2–PrOx phase diagram. Samples have been processed under four different atmospheres (O2, air, N2 and 5%H2(Ar)), so as to vary the environmental conditions from oxidising to reducing. Sample colouration ranged from dark brown to bright green, owing to varying Pr4+ content. A close correlation is found between the phase homogeneity, the microstructure and the Pr content. Pr–deficient samples present a homogeneous microstructural aspect and composition, whereas Pr–rich compositions always break into 5–25 µm–sized grains with pyrochlore phases at the grain centre and ill–crystallised, Pr–rich oxidised phases at the grain–boundaries. Raman spectroscopy shows that different types of oxygen disorder occur depending on composition and processing atmosphere: in Pr–poor samples oxygen interstitials are created to compensate for Zr4+ excess charge, whereas in Pr–rich samples oxygen disorder occurs around the Pr3+ or Pr4+ ions substituting for Zr4+, because of size–mismatch. Magnetic measurements showed a high Pr4+ content, which has been attributed to several factors: the highly oxidised state of the feedstock material, the segregation of Pr and O–rich grain boundaries in compositions with praseodymium molar rate> 0.5, and the lower oxide–ion conductivity for PZO compositions, compared to either Pr–poor or Pr–rich compositions. Post–processing thermal annealing in a vacuum at 1000 °C enabled total Pr reduction, with the exception of the Pr–rich P2.24 samples, where some Pr4+ ions remained in the oxidised state.
Idioma: Inglés
DOI: 10.1016/j.jallcom.2022.166449
Año: 2022
Publicado en: JOURNAL OF ALLOYS AND COMPOUNDS 923 (2022), 166449 [11 pp.]
ISSN: 0925-8388

Factor impacto JCR: 6.2 (2022)
Categ. JCR: METALLURGY & METALLURGICAL ENGINEERING rank: 8 / 79 = 0.101 (2022) - Q1 - T1
Categ. JCR: CHEMISTRY, PHYSICAL rank: 45 / 161 = 0.28 (2022) - Q2 - T1
Categ. JCR: MATERIALS SCIENCE, MULTIDISCIPLINARY rank: 91 / 343 = 0.265 (2022) - Q2 - T1

Factor impacto CITESCORE: 10.9 - Materials Science (Q1) - Engineering (Q1)

Factor impacto SCIMAGO: 1.079 - Materials Chemistry (Q1) - Metals and Alloys (Q1) - Mechanics of Materials (Q1) - Mechanical Engineering (Q1)

Financiación: info:eu-repo/grantAgreement/ES/AEI/PID2019-107106RB-C32
Financiación: info:eu-repo/grantAgreement/ES/MINECO/BES-2017-079683
Financiación: info:eu-repo/grantAgreement/ES/MINECO-FEDER/MAT2016-77769R
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Cienc.Mater. Ingen.Metal. (Dpto. Ciencia Tecnol.Mater.Fl.)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.


Exportado de SIDERAL (2024-03-18-16:36:51)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2022-11-15, última modificación el 2024-03-19


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)